# Iterated Integral

Can anybody do the following integral?

$\int\limits_1^2\int\limits_{x^3}^{x}e^{y/x}dydx$

Note by Esraa Ibrahim
4 years, 2 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

You start by evaluating the inner integral

$$\int_1^2 \! \int_{x^3}^{x} \! e^{\frac{y}{x}} \, dy \, dx = \int_1^2 \! [xe^{\frac{y}{x}}]_{x^3}^{x} \, dx = \int_1^2 \! (ex-xe^{x^2}) \, dx$$

You then follow by evaluating the outer integral

$$\int_1^2 \! (ex-xe^{x^2}) \, dx = [ \frac{e}{2} x^2 - \frac{1}{2} e^{x^2} ]_1^2 = ( 2e - \frac{1}{2} e^{4} ) - ( \frac{1}{2} e - \frac{1}{2} e ) = \boxed{\frac{1}{2} e (4 - e^{3})}$$

- 4 years, 2 months ago

thanks alot ^^

- 4 years, 2 months ago

Aw... i know the answer but i dont know how to explain it in this website....

- 4 years, 2 months ago

thanks...no problem^^

- 4 years, 2 months ago