Waste less time on Facebook — follow Brilliant.
×

Iterated Integral

Can anybody do the following integral?

\[\int\limits_1^2\int\limits_{x^3}^{x}e^{y/x}dydx\]

Note by Esraa Ibrahim
2 years, 11 months ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

You start by evaluating the inner integral

\( \int_1^2 \! \int_{x^3}^{x} \! e^{\frac{y}{x}} \, dy \, dx = \int_1^2 \! [xe^{\frac{y}{x}}]_{x^3}^{x} \, dx = \int_1^2 \! (ex-xe^{x^2}) \, dx \)

You then follow by evaluating the outer integral

\( \int_1^2 \! (ex-xe^{x^2}) \, dx = [ \frac{e}{2} x^2 - \frac{1}{2} e^{x^2} ]_1^2 = ( 2e - \frac{1}{2} e^{4} ) - ( \frac{1}{2} e - \frac{1}{2} e ) = \boxed{\frac{1}{2} e (4 - e^{3})} \) Cole Coupland · 2 years, 11 months ago

Log in to reply

@Cole Coupland thanks alot ^^ Esraa Ibrahim · 2 years, 11 months ago

Log in to reply

Aw... i know the answer but i dont know how to explain it in this website.... Raka Panuntun · 2 years, 11 months ago

Log in to reply

@Raka Panuntun thanks...no problem^^ Esraa Ibrahim · 2 years, 11 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...