New user? Sign up

Existing user? Log in

Can anybody do the following integral?

\[\int\limits_1^2\int\limits_{x^3}^{x}e^{y/x}dydx\]

Note by Esraa Ibrahim 4 years, 2 months ago

Easy Math Editor

*italics*

_italics_

**bold**

__bold__

- bulleted- list

1. numbered2. list

paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)

> This is a quote

This is a quote

# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"

2 \times 3

2^{34}

a_{i-1}

\frac{2}{3}

\sqrt{2}

\sum_{i=1}^3

\sin \theta

\boxed{123}

Sort by:

You start by evaluating the inner integral

\( \int_1^2 \! \int_{x^3}^{x} \! e^{\frac{y}{x}} \, dy \, dx = \int_1^2 \! [xe^{\frac{y}{x}}]_{x^3}^{x} \, dx = \int_1^2 \! (ex-xe^{x^2}) \, dx \)

You then follow by evaluating the outer integral

\( \int_1^2 \! (ex-xe^{x^2}) \, dx = [ \frac{e}{2} x^2 - \frac{1}{2} e^{x^2} ]_1^2 = ( 2e - \frac{1}{2} e^{4} ) - ( \frac{1}{2} e - \frac{1}{2} e ) = \boxed{\frac{1}{2} e (4 - e^{3})} \)

Log in to reply

thanks alot ^^

Aw... i know the answer but i dont know how to explain it in this website....

thanks...no problem^^

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestYou start by evaluating the inner integral

\( \int_1^2 \! \int_{x^3}^{x} \! e^{\frac{y}{x}} \, dy \, dx = \int_1^2 \! [xe^{\frac{y}{x}}]_{x^3}^{x} \, dx = \int_1^2 \! (ex-xe^{x^2}) \, dx \)

You then follow by evaluating the outer integral

\( \int_1^2 \! (ex-xe^{x^2}) \, dx = [ \frac{e}{2} x^2 - \frac{1}{2} e^{x^2} ]_1^2 = ( 2e - \frac{1}{2} e^{4} ) - ( \frac{1}{2} e - \frac{1}{2} e ) = \boxed{\frac{1}{2} e (4 - e^{3})} \)

Log in to reply

thanks alot ^^

Log in to reply

Aw... i know the answer but i dont know how to explain it in this website....

Log in to reply

thanks...no problem^^

Log in to reply