Waste less time on Facebook — follow Brilliant.
×

Jee functions help

If \[f(x+2)-5f(x+1)+6f(x)=0\]

domain=\(R\)

Find the value of \( f(0),f(1),f(2),f(3) \)

Note by Aakash Mandal
2 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

My initial thought was that this functional equation looks like a familiar quadratic equation. So it seems reasonable to find the values of x for which a quadratic equation is formed. i.e. Let \(\ f(x+1) = x f(x) \ , \ f(x+2) = x^2 f(x): \) \[\ f(x) (x^2 -5x+6) = f(x)(x-2)(x-3) = 0 \] From this equation it is clear that x=2 and x=3 satisfies the conditions. \[\therefore\ f(4) = 4 f(2)......(1) \ and \ f(3) = 2f(2)....(2) \] Now lets sum together the following 3 equation: \[\ f(2) -5f(1) +6 f(0) = 0 \] \[\ f(3) -5f(2) +6 f(1) = 0 \] \[\ f(4) -5f(3) +6 f(2) = 0 \] This gives \[\ 6f(0) +f(1) -4f(3) +f(4) = 0 \] Using equation (1) and (2): \[\ 6f(0) +f(1) = 4f(2) \] subtracting this equation from \(\ 6f(0) -5f(1) = -f(2) \) gives: \[\ 6f(1) =5 f(2) \] From looking at an earlier equation we have: \[\ f(3) = 5f(2) - 6f(1) = 0 \implies\ f(2) = 0 \implies\ f(4) = 0 \] \[\implies f(0) = 0 \] In fact we can use induction to show that \(\ f(x) = 0 \) for all non-negative integers.

Curtis Clement - 2 years, 4 months ago

Log in to reply

Observe that \(f(x) = C2^x \) is a solution to the functional equation.

What is the error in your solution, in which you only found \(C=0\)?

Note: How can we classify the rest of the solutions?

Calvin Lin Staff - 2 years, 4 months ago

Log in to reply

I had a feeling that I may have found a unique solution, so thanks for pointing that out. I think I found the error, so here's my (attempt at a) correction... \[\ f(x)(x-2)(x-3) = 0 \Rightarrow\ f(x+1) = 2 . f(x) = 2^2 .f(x-1) \] \[\ =...= 2^x f(1) = C 2^x \] Similarily: \[\ f(x) = K. 3^x \] is also a solution. Furthermore, we could put \(\ f(x) = K a^x \) to show that only a = 2,3 produce solutions.

Curtis Clement - 2 years, 4 months ago

Log in to reply

@Curtis Clement Are those the only solutions?

Calvin Lin Staff - 2 years, 4 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...