If f(x) = x^4 + ax^3 + bx^2 + cx + d, and f(2)= 1, f(3) = 2, f(4) = 3, f(5) = 4, what is the value of a + b + c + d ?
Please find it out as soon as possible. I am having problems in finding it out

Let \( g(x) = f(x) - x + 1 \).Then \(g(x) \) is of degree \( 4\). And for \( x =2,3,4,5 \), \( g(x) = 0 \).This implies \( 2,3,4,5 \) are the roots of \( g(x) \).

Thus we can write
\( g(x) = (x-2)(x-3)(x-4)(x-5) \)

\( \Rightarrow f(x) - x + 1 = (x-2)(x-3)(x-4)(x-5) \)

\( \Rightarrow x^4 + ax^3 + bx^2 + cx + d - x + 1 = (x-2)(x-3)(x-4)(x-5) \).

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestLet \( g(x) = f(x) - x + 1 \).Then \(g(x) \) is of degree \( 4\). And for \( x =2,3,4,5 \), \( g(x) = 0 \).This implies \( 2,3,4,5 \) are the roots of \( g(x) \).

Thus we can write \( g(x) = (x-2)(x-3)(x-4)(x-5) \)

\( \Rightarrow f(x) - x + 1 = (x-2)(x-3)(x-4)(x-5) \)

\( \Rightarrow x^4 + ax^3 + bx^2 + cx + d - x + 1 = (x-2)(x-3)(x-4)(x-5) \).

Putting \( x = 1 \)

\( \Rightarrow 1^4 + a*1^3 + b*1^2 + c*1 + d - 1 + 1 = (1-2)(1-3)(1-4)(1-5) \)

\( \Rightarrow a+b+c+d = 24-1 = 23 \).

Log in to reply

I think that g(x) should be equal to f(x) - x + 1

Log in to reply

Thanks. Corrected. Hopefully correct now.

Log in to reply

thats what he got bro

Log in to reply