Prove that there is a real value of \(x\) real such that \(\sin x+\cos x+\tan x = 0\)

[no drawn/approximated answers will be accepted]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewest\( \sin(x) + \cos(x) + \tan(x) = 0 \Rightarrow \sin(x) + \cos(x) = -\tan(x) \)

\( \sin^2(x) + 2\sin(x)\cos(x) + \cos^2(x) = \tan^2(x) \)

\( 1 + \sin(2x) = \tan^2(x) \)

\( \sin(2x) = \frac{\sin^2(x) - \cos^2(x) }{\cos^2(x)} \)

\( \sin(2x) = \frac{-\cos(2x)}{\cos^2(x)} \)

\( \tan(2x) = -\sec^2(x) \)

\( \frac{-2\tan(x)}{1-\tan^2(x)} = \left(1 + \tan^2(x) \right) \)

\( -2\tan(x) = \left(1- \tan^2(x) \right) \left(1+ \tan^2(x) \right) \)

\( -2\tan(x) = 1 - \tan^4(x) \)

Let \( y = \tan(x) \Rightarrow y^4-2y-1 = 0\)

\( y = 1 \Rightarrow y^4 - 2y - 1 = -2 < 0 \)

\( y = 2 \Rightarrow y^4 - 2y - 1 = 11 > 0 \)

\(y^4 - 2y - 1\) is a continuous function and thus by the Intermediate Value Theorem, there exists some real \(a, \; 1 < a < 2 \) such that \(y = a \Rightarrow y^4 - 2y - 1 = 0\)

This then means that since \( a \in \mathbb{R} \) then there exists some \(x \in \mathbb{R} \) such that \( \tan(x) = a\)

However, it remains to show that this result is not spurious as the second step involved squaring, and this is something I have yet to accomplish. I shall leave this here and then edit in future as appropriate.

Log in to reply

Hmm I have a clear path to a solution which will work and give me an answer, thus solving the problem. The algebra involved is messy and complex and I think there is a much more elegant way to prove that there is a solution without proof by example.

Log in to reply

Here is what Mathematica gave without me chasing solutions. As you can see it is not worth solving by hand.

Log in to reply

No need of anything at all ! You may see the solution of this problem on the website's past contests....

Log in to reply

Yes, there's a good way and it will be posted ... I am a staff at the JOMO, and JOMO 5 took place over a month ago ! If you like the problems of this set (JOMO 5, and also the JOMO 6 we're gonna make now) ,,, then you should participate in the JOMO .....

Log in to reply