Waste less time on Facebook — follow Brilliant.
×

JOMO 5, Long 2

Prove that there is a real value of \(x\) real such that \(\sin x+\cos x+\tan x = 0\)

[no drawn/approximated answers will be accepted]

Note by Aditya Raut
3 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\( \sin(x) + \cos(x) + \tan(x) = 0 \Rightarrow \sin(x) + \cos(x) = -\tan(x) \)

\( \sin^2(x) + 2\sin(x)\cos(x) + \cos^2(x) = \tan^2(x) \)

\( 1 + \sin(2x) = \tan^2(x) \)

\( \sin(2x) = \frac{\sin^2(x) - \cos^2(x) }{\cos^2(x)} \)

\( \sin(2x) = \frac{-\cos(2x)}{\cos^2(x)} \)

\( \tan(2x) = -\sec^2(x) \)

\( \frac{-2\tan(x)}{1-\tan^2(x)} = \left(1 + \tan^2(x) \right) \)

\( -2\tan(x) = \left(1- \tan^2(x) \right) \left(1+ \tan^2(x) \right) \)

\( -2\tan(x) = 1 - \tan^4(x) \)

Let \( y = \tan(x) \Rightarrow y^4-2y-1 = 0\)

\( y = 1 \Rightarrow y^4 - 2y - 1 = -2 < 0 \)

\( y = 2 \Rightarrow y^4 - 2y - 1 = 11 > 0 \)

\(y^4 - 2y - 1\) is a continuous function and thus by the Intermediate Value Theorem, there exists some real \(a, \; 1 < a < 2 \) such that \(y = a \Rightarrow y^4 - 2y - 1 = 0\)

This then means that since \( a \in \mathbb{R} \) then there exists some \(x \in \mathbb{R} \) such that \( \tan(x) = a\)

However, it remains to show that this result is not spurious as the second step involved squaring, and this is something I have yet to accomplish. I shall leave this here and then edit in future as appropriate.

Danny He - 3 years, 5 months ago

Log in to reply

Hmm I have a clear path to a solution which will work and give me an answer, thus solving the problem. The algebra involved is messy and complex and I think there is a much more elegant way to prove that there is a solution without proof by example.

Ali Caglayan - 3 years, 5 months ago

Log in to reply

Here is what Mathematica gave without me chasing solutions. As you can see it is not worth solving by hand.

Ali Caglayan - 3 years, 5 months ago

Log in to reply

No need of anything at all ! You may see the solution of this problem on the website's past contests....

Aditya Raut - 3 years, 5 months ago

Log in to reply

Yes, there's a good way and it will be posted ... I am a staff at the JOMO, and JOMO 5 took place over a month ago ! If you like the problems of this set (JOMO 5, and also the JOMO 6 we're gonna make now) ,,, then you should participate in the JOMO .....

Aditya Raut - 3 years, 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...