# Kandarp's Observation

If $$a_1, a_2, a_3, \ldots a_n$$ are in an Arithmetic Progression with common difference $$d \neq 0$$, then prove that

$\sin (d) \times ( \csc (a_1) \times \csc (a_2) + \csc (a_2) \times \csc (a_3) + \ldots + \csc (a_{n-1}) \times \csc (a_n) ) = \cot( a_ 1 )- \cot (a_n.)$

Note by Calvin Lin
4 years, 2 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

First open all the terms to get $$LHS=sin(d)csc({ a }_{ 1 })csc({ a }_{ 2 })+sin(d)csc({ a }_{ 2 })csc({ a }_{ 3 })+................sin(d)csc({ a }_{ n-1 })csc({ a }_{ n })\\ =\frac { sin(d) }{ sin({ a }_{ 1 })sin({ a }_{ 2 }) } +\frac { sin(d) }{ sin({ a }_{ 2 })sin({ a }_{ 3 }) } +............+\frac { sin(d) }{ sin({ a }_{ n-1 })sin({ a }_{ n }) } .$$

Now since $${ a }_{ 1 },{ a }_{ 2 },......{ a }_{ n }$$ are in $$A.P.$$

$$d={ a }_{ 2 }-{ a }_{ 1 }={ a }_{ 3 }-{ a }_{ 2 }=............={ a }_{ n }-{ a }_{ n-1 }.$$

Now replacing $$d$$ suitably we get

$$LHS=\frac { sin({ a }_{ 2 }-{ a }_{ 1 }) }{ sin({ a }_{ 1 })sin({ a }_{ 2 }) } +\frac { sin({ a }_{ 3 }-{ a }_{ 2 }) }{ sin({ a }_{ 2 })sin({ a }_{ 3 }) } +............+\frac { sin({ a }_{ n }-{ a }_{ n-1 }) }{ sin({ a }_{ n-1 })sin({ a }_{ n }) } .$$

Using identity $$sin(A-B)=sin(A)cos(B)-sin(B)cos(A)$$ we get

$$\frac { sin(A-B) }{ sin(A)sin(B) } =\frac { sin(A)cos(B)-sin(B)cos(A) }{ sin(A)sin(B) } =cot(B)-cot(A).$$

Now our $$LHS$$ becomes $$=\quad (cot({ a }_{ 2 })-cot({ a }_{ 1 }))+(cot({ a }_{ 3 })-cot({ a }_{ 2 }))+...........+(cot({ a }_{ n })-cot({ a }_{ n-1 }))$$

Note how terms cancel here hence $$LHS$$ becomes $$=\quad cot({ a }_{ n })-cot({ a }_{ 1 })=RHS\quad$$

$$Hence\quad proved$$

- 4 years, 2 months ago

@Kandarp Singh I believe that you will get better response posting this as a note for discussion, instead of as a question looking for a numerical answer.

Staff - 4 years, 2 months ago

ok

- 4 years, 2 months ago

The $$RHS$$ kinda suggests that this is telescopical. Indeed, $$sin(d)*csc(a_n)*csc(a_{n+1})=\frac {sin(a_{n+1}-a_{n})}{sin(a_n)*sin(a_{n+1})}$$ Using the difference formula, it simplifies to $$cot(a_n)-cot(a_{n+1})$$.

Hence LHS=$$cot(a_1)-cot(a_2)+cot(a_2)-cot(a_3)+...+cot(a_{n-1})-cot{a_n}=cot(a_1)-cot(a_n)$$

- 4 years, 2 months ago

×