This problem was asked in KVPY 2014 held on 2nd November SA stream

The value of -

\(\sum _{ n=0 }^{ 1947 }{ \frac { 1 }{ { 2 }^{ n }+\sqrt { { 2 }^{ 1947 } } } } \)

is equal to-

A. \(\frac { 487 }{ \sqrt { { 2 }^{ 1945 } } } \)

B. \(\frac { 1946 }{ \sqrt { { 2 }^{ 1947 } } }\)

C. \(\frac { 1947 }{ \sqrt { { 2 }^{ 1947 } } }\)

D. \(\frac { 1948 }{ \sqrt { { 2 }^{ 1947 } } }\)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewest@Karthik Sharma Combine the first and the last term, then the 2nd and 2nd last.. See what happens

Log in to reply

Oh! yes got it now. Its 'A'.

Log in to reply

how

Log in to reply

As we devide same digits we get ans. 1 what happen in this 0/0.

Log in to reply

DUDE APKO NI PTA

Log in to reply