Waste less time on Facebook — follow Brilliant.
×

Largest power of 2 which doesn't contain 0?

What is the largest power of \(2\) which doesn't contain \(0\)?

I tried a variety of methods to tackle this problem including programming and I even got the answer as \(86\) but I couldn't prove that there exists no larger power of \(2\) which doesn't contain \(0\).


Note: I tried brute forcing for integers up to \({2}^{100000}\) but with no luck. So for \({2}^{n}\), the \(n\) must be greater than \(100000\). Inspiration (Calvin Lin's comment).

Note by Arulx Z
2 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

If you've tried up to \(2^{100000},\) which has in excess of \(30000\) digits, then the probability that any given power of two greater than this not including a \(0\) would be less than \(10^{-1378}.\) While this is not a proof, it seems pretty certain that no greater power than \(2^{100000}\) will be devoid of a \(0.\) So perhaps \(86\) is indeed the solution that you are looking for.

Edit: This is in fact the conjectured greatest power with this property, but a proof remains an open problem.

Brian Charlesworth - 2 years, 3 months ago

Log in to reply

Relevant.

Pi Han Goh - 1 year, 11 months ago

Log in to reply

99999999999999999999998

Rushikesh Jyoti - 2 years, 2 months ago

Log in to reply

Prove it.

Arulx Z - 2 years, 1 month ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...