New user? Sign up

Existing user? Sign in

In triangle \(ABC\) with altitudes \(AD\), \(BE\), and \( CF\), prove that \(ADsin(A) = BEsin(B) = CFsin(C)\).

Note by Tristan Shin 3 years, 10 months ago

Easy Math Editor

*italics*

_italics_

**bold**

__bold__

- bulleted- list

1. numbered2. list

paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)

> This is a quote

This is a quote

# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"

2 \times 3

2^{34}

a_{i-1}

\frac{2}{3}

\sqrt{2}

\sum_{i=1}^3

\sin \theta

\boxed{123}

Sort by:

I did it.

Let \(AB=c, AC=b, BC=a\).

Then

\(A=\frac { aAD }{ 2 } =\frac { bBE }{ 2 } =\frac { cCF }{ 2 } \),

which gives us the formulas for the altitudes:

\(AD=\frac { 2A }{ a } ,\quad BE=\frac { 2A }{ b } ,\quad CF=\frac { 2A }{ c } \)

For the sines we will use the formulas:

\(A=\frac { bcsin(A) }{ 2 } =\frac { acsin(B) }{ 2 } =\frac { absin(C) }{ 2 } \),

which gives us:

\(sin(A)=\frac { 2A }{ bc } ,\quad sin(B)=\frac { 2A }{ ac } ,\quad sin(C)=\frac { 2A }{ ab } \)

If we plug everything in the relation we have to prove we get:

\(\frac { 4{ A }^{ 2 } }{ abc } =\frac { 4{ A }^{ 2 } }{ abc } =\frac { 4{ A }^{ 2 } }{ abc } \)

which is true.

Log in to reply

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestI did it.

Let \(AB=c, AC=b, BC=a\).

Then

\(A=\frac { aAD }{ 2 } =\frac { bBE }{ 2 } =\frac { cCF }{ 2 } \),

which gives us the formulas for the altitudes:

\(AD=\frac { 2A }{ a } ,\quad BE=\frac { 2A }{ b } ,\quad CF=\frac { 2A }{ c } \)

For the sines we will use the formulas:

\(A=\frac { bcsin(A) }{ 2 } =\frac { acsin(B) }{ 2 } =\frac { absin(C) }{ 2 } \),

which gives us:

\(sin(A)=\frac { 2A }{ bc } ,\quad sin(B)=\frac { 2A }{ ac } ,\quad sin(C)=\frac { 2A }{ ab } \)

If we plug everything in the relation we have to prove we get:

\(\frac { 4{ A }^{ 2 } }{ abc } =\frac { 4{ A }^{ 2 } }{ abc } =\frac { 4{ A }^{ 2 } }{ abc } \)

which is true.

Log in to reply