Greetings everyone, welcome to the part 2.1 of the Laws of Binomial theorem(2.2 coming next week). In this discussion we will use integration and differentiation to transform our original equation to get a desired series . Check the 1st part before you continue with this one. We are starting with the binomial expansion of \( (1+x)^{n} \) . We are calling it equation \( I \) . Where \(x\) is a complex number and \( n \) is a whole number.

\[ \ (1+x)^{n} = \dbinom{n}{0}x^{0}+\dbinom{n}{1}x^{1}+\dbinom{n}{2}x^{2}+\cdots+\dbinom{n}{n-1}x^{n-1}+\dbinom{n}{n}x^{n} = \displaystyle\sum_{r=0}^{n}\dbinom{n}{r}x^{r} \]

Some Important results obtained from \( I \) are

\(1) \) put \( x=1 \)

\[ \boxed{ 2^{n} = \dbinom{n}{0}+\dbinom{n}{1}+\dbinom{n}{2}+\cdots+\dbinom{n}{n-1}+\dbinom{n}{n} = \displaystyle\sum_{r=0}^{n}\dbinom{n}{r}2^{r} } \]

\(2) \) put \( x=-1 \)

\[ 0 = \dbinom{n}{0}-\dbinom{n}{1}+\dbinom{n}{2}-\cdots+\dbinom{n}{n-1}(-1)^{n-1}+\dbinom{n}{n}(-1)^{n} = \displaystyle\sum_{r=0}^{n}\dbinom{n}{r}(-1)^{r} \]

\[ \boxed{ \dbinom{n}{0}+\dbinom{n}{2}+\dbinom{n}{4}+\cdots=\dbinom{n}{1}+\dbinom{n}{3}+\dbinom{n}{5}+\cdots = 2^{n-1} } \]

Now , Differentiate \( I \) with respect to \( x \)

\[ n(1+x)^{n-1} =1\cdot\dbinom{n}{1}+2\cdot\dbinom{n}{2}x^{1}+\cdots+(n-1)\cdot\dbinom{n}{n-1}x^{n-2}+n\cdot\dbinom{n}{n}x^{n-1} = \displaystyle\sum_{r=0}^{n}r\dbinom{n}{r}x^{r-1} \]

put \( x=1 \)

\[ \boxed{ n\cdot2^{n-1} =1\cdot\dbinom{n}{1}+2\cdot\dbinom{n}{2}+\cdots+(n-1)\cdot\dbinom{n}{n-1}+n\cdot\dbinom{n}{n} = \displaystyle\sum_{r=0}^{n}r\dbinom{n}{r} } \]

Similarly we can differentiate \( I \) twice to get a new series. Let's Try to find the sum of

\[ 1^2\cdot\dbinom{n}{1}+2^2\cdot\dbinom{n}{2}+\cdots+(n-1)^2\cdot\dbinom{n}{n-1}+n^2\cdot\dbinom{n}{n} = \displaystyle\sum_{r=0}^{n}r^2\dbinom{n}{r} \]

Let's start with \( I \) \[ \ (1+x)^{n} = \dbinom{n}{0}x^{0}+\dbinom{n}{1}x^{1}+\cdots+\dbinom{n}{n}x^{n} = \displaystyle\sum_{r=0}^{n}\dbinom{n}{r}x^{r} \quad\quad\quad\quad\quad\quad\quad\quad \small\color{blue}{\text{0th derivative}} \]

\[ n(1+x)^{n-1} =1\cdot\dbinom{n}{1}+2\cdot\dbinom{n}{2}x^{1}+\cdots+n\cdot\dbinom{n}{n}x^{n-1} = \displaystyle\sum_{r=0}^{n}r\dbinom{n}{r}x^{r-1} \quad \small\color{blue}{\text{1st derivative}} \]

\[ nx(1+x)^{n-1} =1\cdot\dbinom{n}{1}x^{1}+2\cdot\dbinom{n}{2}x^{2}+\cdots+n\cdot\dbinom{n}{n}x^{n} = \displaystyle\sum_{r=0}^{n}r\dbinom{n}{r}x^{r} \quad \small\color{blue}{\text{times x on both sides}} \]

\[ \underbrace{n(1+x)^{n-1}+n(n-1)x(1+x)^{n-2}}_{n(nx+1)(1+x)^{n-2}} =1^2\cdot\dbinom{n}{1}+2^2\cdot\dbinom{n}{2}x^1+\cdots+n^2\cdot\dbinom{n}{n}x^{n-1} = \displaystyle\sum_{r=0}^{n}r^2\dbinom{n}{r}x^{r-1} \quad \small\color{blue}{\text{2nd derivative}} \]

\[\boxed{ n(n+1)2^{n-2}=1^2\cdot\dbinom{n}{1}+2^2\cdot\dbinom{n}{2}+\cdots+n^2\cdot\dbinom{n}{n}= \displaystyle\sum_{r=0}^{n}r^2\dbinom{n}{r} \quad \small\color{blue}{\text{Put x=1}} } \]

For Practice try to find the sum of the following series:

\(1) \quad 1^3\cdot\dbinom{n}{1}+2^3\cdot\dbinom{n}{2}+\cdots+(n-1)^3\cdot\dbinom{n}{n-1}+n^3\cdot\dbinom{n}{n} \)

\(2) \quad 1\cdot2\cdot\dbinom{n}{2}+3\cdot2\cdot\dbinom{n}{3}+\cdots+(n-1)\cdot(n-2)\cdot\dbinom{n}{n-1}+n\cdot(n-1)\dbinom{n}{n} \)

Thank You :)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestWoah, these identities are really nice and useful! I can see combinatorial proofs being used here.

I think you should create a wiki page to showcase these few identities and how to extrapolate these pattern.

Log in to reply

@Sambhrant Sachan Agreed! Let me know if you need help getting started. Several of these could be added directly to binomial theorem.

Log in to reply

Sir, can you confirm that total partitions (with permutations) of a integer \( N \) is \( 2^{N-1} \) .

For example ,

\( \begin{align} 3 & = 1+1+1 \quad \quad 2^{3-1} = \boxed{4}\\ & = 1+2 \\ & = 2+1 \\ & = 3 \\ 4 & = 1+1+1+1 \quad \quad 2^{4-1} = \boxed{8} \\ & = 1+1+2 \\ & = 1+2+1 \\ & = 2+1+1 \\ & = 1+3 \\ & = 3+1 \\ & = 2+2 \\ & = 4 \end{align} \)

If it is correct i will explain the proof in combinatorics .

Log in to reply

product rule.

Yes it is. It follows directly fromI think the product rule wiki or the bijection, injection, and surjection wiki would be a much better place for it.

Log in to reply

As soon as i finish my series , i will work on the wiki :) .

Log in to reply