Light bending in gravitational field

Please see the following question $$\rightarrow$$ link I have solved the first part, but instead of a positive sign, I get a negative one. This is due to that they take potential $$-\dfrac{GM}{r}$$. Now in part b of the question, I get the answer by simply differentiating the optical path length with respect to 'closest distance' and I get the required answer, but I don't really understand why. Can you please tell why is the differential of optical path length equal to the angle turned by the light? Or is it just a coincidence? If so, what should be the correct method for solving part(b)?

Note:- Make suitable approximations wherever necessary.

My solution:-

The Question:-

Page 2

Note by Rajdeep Dhingra
3 months, 2 weeks ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by: