×

# Limit

$\large \lim_{x\to 0} \frac{x^{2}}{\cos(5x)-\tan^{2}(3x)-1}$ Evaluate the limit above without using L'Hôpital rule.

Note by Majed Musleh
2 years, 2 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

$$\large \lim_{x\to 0} \dfrac{x^{2}}{\cos(5x)-\tan^{2}(3x)-1}$$

$$= \large \lim_{x\to 0} \dfrac{1}{\frac{\cos(5x)- 1}{x^2} - \frac{\tan^{2}(3x)}{x^2}}$$

$$= \large \lim_{x\to 0} \dfrac{1}{25\frac{\cos(5x)- 1}{(5x)^2} - 9\frac{\tan^{2}(3x)}{(3x)^2}}$$

$$= \dfrac{1}{\frac{-25}{2} - 9}$$

$$= \frac{ -2}{43}$$

I only use $$\large \lim_{x\to 0} \frac{\tan(x)}{x} = 1$$ and $$\large \lim_{x\to 0} \frac{\cos(x) - 1}{x^2} = \frac{-1}{2}$$

- 2 years, 2 months ago

One way would be to use the relevant Maclaurin series for the cosine and tangent functions. The limit would then become

$$\lim_{x \rightarrow 0} \dfrac{x^{2}}{(1 - \dfrac{(5x)^{2}}{2} + O(x^{4})) - ((3x) + O(x^{3}))^{2} - 1} =$$

$$\lim_{x \rightarrow 0} \dfrac{x^{2}}{-\dfrac{25x^{2}}{2} - 9x^{2} + O(x^{4})} = \lim_{x \rightarrow 0} \dfrac{1}{-\dfrac{25}{2} - 9 + O(x^{2})} = -\dfrac{2}{43}.$$

- 2 years, 2 months ago