Waste less time on Facebook — follow Brilliant.
×

Limit

\[\large \lim_{x\to 0} \frac{x^{2}}{\cos(5x)-\tan^{2}(3x)-1}\] Evaluate the limit above without using L'Hôpital rule.

Note by Majed Musleh
2 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\( \large \lim_{x\to 0} \dfrac{x^{2}}{\cos(5x)-\tan^{2}(3x)-1}\)

\( = \large \lim_{x\to 0} \dfrac{1}{\frac{\cos(5x)- 1}{x^2} - \frac{\tan^{2}(3x)}{x^2}} \)

\( = \large \lim_{x\to 0} \dfrac{1}{25\frac{\cos(5x)- 1}{(5x)^2} - 9\frac{\tan^{2}(3x)}{(3x)^2}} \)

\( = \dfrac{1}{\frac{-25}{2} - 9} \)

\( = \frac{ -2}{43} \)

I only use \( \large \lim_{x\to 0} \frac{\tan(x)}{x} = 1 \) and \( \large \lim_{x\to 0} \frac{\cos(x) - 1}{x^2} = \frac{-1}{2} \)

Siddhartha Srivastava - 2 years, 2 months ago

Log in to reply

One way would be to use the relevant Maclaurin series for the cosine and tangent functions. The limit would then become

\(\lim_{x \rightarrow 0} \dfrac{x^{2}}{(1 - \dfrac{(5x)^{2}}{2} + O(x^{4})) - ((3x) + O(x^{3}))^{2} - 1} =\)

\(\lim_{x \rightarrow 0} \dfrac{x^{2}}{-\dfrac{25x^{2}}{2} - 9x^{2} + O(x^{4})} = \lim_{x \rightarrow 0} \dfrac{1}{-\dfrac{25}{2} - 9 + O(x^{2})} = -\dfrac{2}{43}.\)

Brian Charlesworth - 2 years, 2 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...