# Limit to infinity

Suppose that f(x) diffirentiabel f'(x)=1/{x^2+f(x)^2} and f(1)=1, find lim x to infinity f(x)

Note by Pebrudal Zanu
5 years, 4 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

0

- 5 years, 4 months ago

0 can't be the answer as the the slope is 1/2 at x = 1 and as x tends to infinity f'(x) remains always positive and tends to zero, hence the function keeps increasing from x = 1 and approaches some maximum value which is less than infinity but greater than 1.

- 5 years, 4 months ago

Someone..

- 5 years, 4 months ago

It can be written as dy/dx=1/(x^2+y^2) I don't know how to solve it but it seems to me a first order non-linear ordinary differential equation.

If you know how to solve this differential equation you can find the function and hence the limit. OR if you just need the answer try WolframAlpha or something like that to solve the differential equation.

Hope this would help!

- 5 years, 4 months ago