Waste less time on Facebook — follow Brilliant.

Limiting the modulo products

\[\displaystyle \lim_{n \to \infty} {\left(\dfrac{\displaystyle \prod_{\substack{m \left \lfloor n/t\right \rfloor \le k \le mn \\ k\mod{m} \equiv p}} k}{\displaystyle \prod_{\substack{m \left \lfloor n/t\right \rfloor \le k \le mn \\ k\mod{m} \equiv q}} k }\right)} = t^{(p-q)/m}\]

Try to prove this. Observe what all it is trying to express.

Note by Kartik Sharma
8 months ago

No vote yet
1 vote


Sort by:

Top Newest

Okay, here is the solution. Kartik Sharma · 7 months, 3 weeks ago

Log in to reply


Problem Loading...

Note Loading...

Set Loading...