\[\int _{ 0 }^{ 1 }{ { x }^{ n }\ln { (\sin { \pi x } ) } \, dx } \]

Find a closed form of the integral above, where \(n\) is a positive integer.

This is a part of the set Formidable Series and Integrals

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestthe trick is to write the Fourier series \[\ln(\sin(\pi x))=-\ln(2)-\sum_{k=1}^\infty \dfrac{\cos(2\pi x k)}{k}\] it follows that the integral is then: \[\int_0^1 x^n \ln(\sin(\pi x)) dx= -\dfrac{\ln(2)}{n+1}-\sum_{k=1}^\infty \dfrac{1}{k} \int_0^1 x^n \cos(2\pi x k) dx= -\dfrac{\ln(2)}{n+1}-\sum_{k=1}^\infty \dfrac{1}{(2\pi)^{n+1}k^{n+2}} \int_0^{2\pi k} x^n \cos(x) dx\] we can see that if \[I_n=\int_0^{2\pi k} x^n \cos(x) dx=-n\int_0^{2\pi k} x^{n-1} \sin(x) dx=n(2\pi k)^{n-1}+n(n-1)I_{n-2}\] we see that \[I_n=\sum_{j<n , j=odd} \dfrac{n!}{(n-j)!} (2\pi k)^{n-j}\] and our original integral is now \[-\dfrac{\ln(2)}{n+1}-\sum_{k=1}^\infty \dfrac{\sum_{j<n , j=odd} \dfrac{n!}{(n-j)!} (2\pi k)^{n-j}}{(2\pi)^{n+1}k^{n+2}}=-\dfrac{\ln(2)}{n+1} -\sum_{j<n , j=odd}\dfrac{n!\zeta(j+2)}{(n-j)! (2\pi)^{j+1}} \]

Log in to reply