# log(-1) = ??

If x^2 = 1 then, x = -1, 1

In logarithm,

log(x^2) = log(1)

or, log((-1)^2) = 0

or, 2 * log(-1) = 0

so, log(-1) = 0

but we know that log(-1) is invalid. What is the problem in this equation??

Note by Fahim Rahman
4 years, 4 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

• bulleted
• list

1. numbered
2. list

1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

> This is a quote
This is a quote
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

log x^2=log 1 10^log 1=x^2 {using property a^logN(at base a)=N} 1=x^2 we are again at the same solution , x=(1,-1). But in the given proof you cannot use the value of x =-1 in the fourth step right like Trevor says.

- 4 years, 1 month ago

Look at the reverse process: $$10^0=1≠-1$$

- 4 years, 4 months ago

now how can i prove that x = -1 form that equation using logarithm?

- 4 years, 4 months ago

While $$x=-1$$ is a solution to the equation $$x^2=1,$$ it is not the $$\textit{principle}$$ root. This is the positive square root. By convention, the square root of $$1$$ is $$1,$$ not $$-1,$$ because $$1$$ is the principle square root.

The mistake is in the fourth line of the proof, where you say that the $$\sqrt{1}=-1.$$

- 4 years, 4 months ago