If \[y= \log_{x}e^{\log_{x}e^{.... \text{50 times}}}\]

Then find \(\dfrac{dy}{dx}\) at \(x=2\)

If \[y= \log_{x}e^{\log_{x}e^{.... \text{50 times}}}\]

Then find \(\dfrac{dy}{dx}\) at \(x=2\)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewest\[y= \log_{x}e^{\log_{x}e^{.... \text{50 times}}}=\log^{50}_{x}e=\frac{1}{\ln^{50}x} \\ \frac{dy}{dx}=-\frac{50\ln^{49}x\cdot \frac{1}{x} }{\ln ^{100}x}=-\frac{50}{x\ln^{51}x} \\ \frac{dy}{dx}|_{x=2}=-\frac{25}{\ln^{51}2}\] – Akshat Sharda · 1 year, 1 month ago

Log in to reply