×

# Looking for some proof

I derived the following equality using a few methods that aren't all that complicated. I'm wondering if there is any way to show this is true other than the way I used to derive it.

$\int _{ -1 }^{ 1 }{ \frac { 2{ x }^{ 3 }+2bx+a+1 }{ \sqrt { 2{ x }^{ 2 }+2\left[ a+b \right] x+{ \left[ a+1 \right] }^{ 2 }+{ \left[ b-1 \right] }^{ 2 } } } dx } =\int _{ 0 }^{ 2 }{ \frac { a+2-y }{ \sqrt { { y }^{ 2 }-2\left[ a+2 \right] y+{ \left[ a+2 \right] }^{ 2 }+{ b }^{ 2 } } } dy }$

where $$a$$ and $$b$$ are real numbers.

Something about it makes me think there's a trick that will make them look the same.

If there isn't any other generally simple way to get this, then I might mess around with what I did to see what can come of it.

Note by Austin Antonacci
2 years ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

- 2 years ago

I used a vector field based off of a gravitational field centered at zero:

$$F\left( x,y \right) =\left< \frac { -x }{ \sqrt { { x }^{ 2 }+{ y }^{ 2 } } } ,\frac { -y }{ \sqrt { { x }^{ 2 }+{ y }^{ 2 } } } \right>$$

This field is conservative, so any closed path integral should result in zero. I decided to create an arbitrary path starting at $$\left( a,b \right)$$ that follows a parabola to $$\left( a+2,b \right)$$ then proceeds linearly back to $$\left( a,b \right)$$. I set up the following parametric equations for these paths:

$${ r }_{ 1 }\left( t \right) =\left< t+a+1,{ t }^{ 2 }+b-1 \right>$$ for $$-1\le t\le 1$$

$${ r }_{ 2 }\left( t \right) =\left< a+2-t,b \right>$$ for $$0\le t\le 2$$

The line integrals give us

$$\int _{ { r }_{ 1 } }^{ }{ F\left( x,y \right) dr } \quad +\quad \int _{ { r }_{ 2 } }^{ }{ F\left( x,y \right) dr } \quad =\quad 0$$

$$\int _{ { r }_{ 1 } }^{ }{ F\left( x,y \right) ds } \quad =\quad -\int _{ { r }_{ 2 } }^{ }{ F\left( x,y \right) dr }$$

From here, if I have copied everything down correctly, it should give the claim above. I might elaborate on the last steps later.

- 1 year, 12 months ago