Let an Set \(\displaystyle{A=\left\{ { x }_{ 1 },{ x }_{ 2 },........,{ x }_{ n } \right\} \\ n=2k+1,\quad k\in { I }^{ + }}\) ,

One-onefunction(s) \[\displaystyle{f:A\rightarrow A\quad \\ \left| f\left( { x }_{ 1 } \right) -{ x }_{ 1 } \right| =\left| f\left( { x }_{ 2 } \right) -{ x }_{ 2 } \right| =........=\left| f\left( { x }_{ n } \right) -{ x }_{ n } \right| }\] , then Find number of all such one-one functions ?

Help Me!

Thanks..!

Karan

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestAre each of the \( x_i \) distinct? Because then you have one solution , the identity function.

Log in to reply

Yes It is... nothing is mention , and read question properly ... We have to Count all such possible cases , obviously f(x)=x is one among such.. But we have to find all ...

Log in to reply

OK. I only see 1 solution though. I even have a proof. Do you have a counter example?

Let \( |f(x_i) - x_i| = m \). If \( m =0 \), we have the identity function. So let us assume \( m \not = 0 \) and a function other than the identity function exists.

Then \( f(x_i) - x_i = \pm m \quad \forall i \in \{ 1,2,...,n \} \).

Divide \( A \) into \( P \) and \( Q \), where if \( f(x_i) - x_i = m \implies x_i \in P \) else \( x_i \in Q \). Since \( P \) and \( Q \) are disjoint, \( |P| + |Q| = |A| = odd \).

Now, \( \sum f(x_i) - x_i = |P|m + |Q|(-m) = (|P| - |Q|)m \)

Now, since \( |P| + |Q| \) is odd, \( |P| - |Q| \) is also odd, hence not zero. Therefore, \( (|P| - |Q|)m \) is not zero and \( \sum f(x_i) - x_i \) is not zero.

But, \( f(x) \) is clearly a permutation function, which means that \( \sum f(x_i) - x_i = 0 \), contradiction.

Therefore there exists no other function other than the identity function.

Log in to reply

invariance argument.

Great! That's anLog in to reply

if \(n\) is odd then how is \(n=2 ?\) , in the set A?

Log in to reply

so what ... ? Please read it properly bro .. n is odd Means total number of terms are odd , It dosn't mean that all terms are odd.... so be careful ..

Log in to reply

ok ..i am sorry.....i thought that x(n) is a general term.....did not look at the end of the set. :(

Log in to reply

Log in to reply

Log in to reply

@Shashwat Shukla @Ronak Agarwal @Raghav Vaidyanathan @Mvs Saketh @Sudeep Salgia @Calvin Linsir @Brian Charlesworth sir @Krishna Sharma @Tanishq Varshney Please help me in this if you can... any help will be appreciated ! Thanks!

Log in to reply