Matrix Functions

Let JJ be the Jordan matrix J=[λ1λ1λ1λ]=λIn+BnJ = \begin{bmatrix} \lambda & 1 & & \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ & & & & \lambda \\ \end{bmatrix} = \lambda {I}_{n} + {B}_{n}

where

Bn=[0101010]{B}_{n} = \begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & 0 \\ \end{bmatrix}

Determine the matrix f(J)f\left(J\right) for some differentiable function ff.

Solution

Observations

If we experiment by exponentiating the matrix Bn{B}_{n}, we will discover two properties:

1) Bn2=[00100110000]{{B}_{n}}^{2} = \begin{bmatrix} 0 & 0 & 1 & & \\ & 0 & 0 & 1 & \\ & & \ddots & \ddots \\ & & & & & 1 \\ & & & & 0 &0 \\ & & & & 0 &0 \\ \end{bmatrix}

and the process continues until

Bnn1=[1]{{B}_{n}}^{n-1} = \begin{bmatrix} & & & & 1 \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{bmatrix}

2) Bnk=0n{{B}_{n}}^{k} = {0}_{n} for knk \ge n.

Hence Bn{B}_{n} is called the shift matrix (you shift the 1-diagonal, building up a trail of zeroes the more you exponentiate). Property 2 illustrates the intrinsic nilpotent property of shift matrices.

Step 1

The exponent of JJ is computed as follows: Jk=(λIn+Bn)k=λkIn+(k1)λk1Bn+(k2)λk2Bn2+...{J}^{k} = ({\lambda {I}_{n} + {B}_{n}})^{k} = {\lambda}^{k}{I}_{n} + \left( \begin{matrix} k \\ 1 \end{matrix} \right) {\lambda}^{k-1}{B}_{n} + \left( \begin{matrix} k \\ 2 \end{matrix} \right) {\lambda}^{k-2} {{B}_{n}}^{2} + ...

(essentially the binomial expansion).

To illustrate the mechanics: Jk=[λkλkλkλk]+[0kλk10kλk10kλk10]+...{J}^{k} = \begin{bmatrix} {\lambda}^{k} & & & \\ &{\lambda}^{k} & & \\ & & \ddots & & \\ & & & {\lambda}^{k} & \\ & & & & {\lambda}^{k} \\ \end{bmatrix} + \begin{bmatrix} 0 & k {\lambda}^{k-1} & & & \\ & 0 & k {\lambda}^{k-1} & & \\ & & \ddots & \ddots & \\ & & & 0 & k {\lambda}^{k-1} \\ & & & & 0 \\ \end{bmatrix} + ...

=[λkkλk1(kn1)λkn+1λk(kn2)λkn+2kλk1λk] = \begin{bmatrix} {\lambda}^{k} & k {\lambda}^{k-1} & \cdots & \left( \begin{matrix} k \\ n-1 \end{matrix} \right) {\lambda}^{k-n+1} \\ &{\lambda}^{k} &\ddots &\left( \begin{matrix} k \\ n-2 \end{matrix} \right) {\lambda}^{k-n+2} \\ & &\ddots &\vdots \\ & & & k {\lambda}^{k-1} \\ & & & {\lambda}^{k} \\ \end{bmatrix}

Step 2

We expand the matrix function f(J)=f(η)In+f(η)J+12!f(η)J2+...f(J) = f(\eta){I}_{n} + f'(\eta)J +\frac{1}{2!} f''(\eta){J}^{2} + ...

for some point η\eta where the derivatives of ff (with respect to λ\lambda) exist.

We substitute the exponents of JJ (giving it the shifting property) to the expanded matrix function ff, which is actually a sum of matrices.

f(J)=[f(η)f(η)f(η)f(η)]+[f(η)λf(η)f(η)λf(η)f(η)f(η)λ]+...f(J) = \begin{bmatrix} f(\eta) & & & \\ &f(\eta) & & \\ & & \ddots & & \\ & & & f(\eta) & \\ & & & & f(\eta) \\ \end{bmatrix} + \begin{bmatrix} f'(\eta)\lambda &f'(\eta) & & \\ & f'(\eta)\lambda & f'(\eta) & \\ & & \ddots & \ddots & \\ & & & f'(\eta) &\\ & & & f'(\eta)\lambda \\ \end{bmatrix} + ...

Collapsing this sum will yield the matrix

f(J)=[f(λ)f(λ)f(n1)(λ)(n1)!f(λt)f(n2)(λ)(n2)!f(λ)f(λ)]f(J) = \begin{bmatrix} f(\lambda) & f'(\lambda) & \cdots & \frac{{f}^{(n-1)}(\lambda)}{(n-1)!} \\ &f(\lambda t) &\cdots &\frac{{f}^{(n-2)}(\lambda)}{(n-2)!} \\ & &\ddots & \vdots \\ & & & f'(\lambda) \\ & & & f(\lambda) \\ \end{bmatrix}

Check out my other notes at Proof, Disproof, and Derivation

Note by Steven Zheng
5 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...