Waste less time on Facebook — follow Brilliant.
×

MAYBE a familiar problem

I have several problems. One of them is: Find is the rightmost digit of 1+4^1+4^2+…4^2012 As it's my 1st discussion I started by picking only 1 problem...

Note by Sheikh Asif Imran Shouborno
4 years, 6 months ago

No vote yet
2 votes

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

1

as 1+4^1+4^2+…4^2012 = 1+4+6+...+6 = 1+0+....0 = 1

Anoopam Mishra - 4 years, 6 months ago

Log in to reply

Take a look at this. \(4^1=4\) , \(4^2=16\), \(4^3=64\), \(4^4=256\). In other words, \(4^{odd}= ...4\) and \(4^{even}= ...6\). So, \(4^{odd}+4^{even}=...10\) Now we are going to take the terms in pairs. \(1+(4^1+4^2)+...+(4^{2011}+4^{2012})\) We know that terms inside the brackets are going to have \(0\) as the rightmost digit. And adding all of them up together will have \(0\) as the rightmost digit. So if we add the \(1\) that is outside the bracket (the leftmost \(1\)), the last digit's going to be \(1\). Hope this helps!

Mursalin Habib - 4 years, 6 months ago

Log in to reply

A slightly cleaner way (which is still saying that same thing) is to say that for \(n\geq 0\), \( 4^{2n+1} + 4^{2n+2} = 4^{2n} ( 4 + 16) = 4^{2n} \times 20 \), hence has a units digit of 0.

This avoids the slight issue of \( 4^0 =1 \), while claiming that \( 4^{even} = \ldots 6 \).

Calvin Lin Staff - 4 years, 6 months ago

Log in to reply

Thank you for pointing it out.

Mursalin Habib - 4 years, 6 months ago

Log in to reply

Another method to solve this problem, is to observe that the numbers are in geometric progression. So use the sum formula of geometric progression and try to find the last digit either by simple calculation, or modular arithmetic.

Siddharth Kumar - 4 years, 6 months ago

Log in to reply

Ignoring 1, if we start with 4^1, we will be able to recognise that 4^(odd number) has the last digit as 4, for eg:-4^3 = 64 and 4^5=1024. In the same way, 4^(even number) has the last digit as 6. The sum is congruent to 0(mod10). Now adding 1 in the sequence, we will get the sum congruent to 1(mod10). So 1 is the last digit.

Siddharth Kumar - 4 years, 6 months ago

Log in to reply

Consider the following: \(4^{2k}\equiv 4{\pmod{10}}\) and \(\\4^{2k+1}\equiv 6{\pmod{10}}\) \[\] Therefore \( 1+4^1+4^2+4^3...4^2012 \equiv \pmod{10} \) Observe all the \(4's\) and \(6's\) pair up and we get the remainder \(1\) mod 10. So the rightmost digit is \(1\)

Vikram Waradpande - 4 years, 6 months ago

Log in to reply

Latex error: It should be \(1+4^1+4^2+4^3...4^{2012}≡ 1+4+6+4+6.....\pmod{10}\)

Vikram Waradpande - 4 years, 6 months ago

Log in to reply

right

Superman Son - 4 years, 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...