Prove that mean of binomial distribution is:

\(E(X)\) = \(np\)

Where n=number of trials and p=probability of success.

Since I could not think of how to put it as an mcq i decided to put it in a note.

Enjoy solving....!

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestPlease do help me in this one .

Log in to reply

\( E(X)=\displaystyle \sum_{x=1}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \)

\(= \displaystyle \dfrac{n!}{x!\times (n-x)!}xp^{x}(1-p)^{n-x} \)

\(= \displaystyle np\dfrac{n!}{(x-1)!\times (n-x)!}p^{x-1}(1-p)^{n-x} \quad x=t+1 ,n=m+1 \)

\(=\displaystyle \dfrac{m!}{t!\times (m-t)!}xp^{x}(1-p)^{m-y} \\= np\sum p_{i} \)

\(= \displaystyle np \quad \because \sum p_{i}=1\)

P.S. I think you understand why I didn't start the sum with x=0 .

Log in to reply

haha yes i understand. I know how to derive i was just posting it as a problem.......:)

Log in to reply

Ok .

Log in to reply

@Azhaghu Roopesh M @Karan Siwach @Deepanshu Gupta @Ronak Agarwal @Mvs Saketh @Sandeep Bhardwaj

Log in to reply