Waste less time on Facebook — follow Brilliant.
×

Mind twisting... Try it

\[a_n=a_{n-1}+1/a_{n-1}\] Where, n>1 \[ a_1=1\] Prove that: \[12 < a_{75} < 15\]

Note by Kïñshük Sïñgh
3 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Here we go, \[a_{n}=a_{n-1}+1/a_{n-1}\]

Squaring both sides: \[a_{n}^{2}=a_{n-1}^{2}+1/a_{n-1}^{2}+2\]

So, if we remove the term: \[1/a_{n-1}^{2}\] from RHS

Then, we can say that: \[a_{n}^{2}>a_{n-1}^{2}+2\]

Therefore, applying a=1,2,3..till \[a_{75}\] and \[a_{1} =1\] \[a_{2}^{2}>3\] \[a_{3}^{2}>5\] .... .... ... Series is \[2n-1\]

Therefore, \[a_{75}^{2}>149\] \[a_{75}>12\]

Now, lets do another part: \[a_{n}^{2}=a_{n-1}^{2}+1/a_{n-1}^{2}+2\]

As, we know that : Maximum value of \[1/a_{n-1}^{2}=1\] Therefore, if we remove this and add 1 then, we can say that: \[a_{n}^{2}≤a_{n-1}^{2}+3\]

Note that equals to sign will be for n=2 only

Now, \[a_{2}^{2}≤4\] \[a_{3}^{2}<7\] \[a_{4}^{2}<10\] ... .... ..... Series is 3n-2 type:

Therefore, \[a_{75}^{2}<223\] \[a_{75}<15\]

Hence, #\[12<a_{75}<15\]

Kïñshük Sïñgh - 3 years, 3 months ago

Log in to reply

Good solution

Ronak Agarwal - 3 years, 3 months ago

Log in to reply

Thanks :)

Kïñshük Sïñgh - 3 years, 3 months ago

Log in to reply

Is this question asked by your sir or what.This question was also asked by my friends in school.

Ronak Agarwal - 3 years, 3 months ago

Log in to reply

I tried this... But finally i got so many equations... Which were very complex

Kïñshük Sïñgh - 3 years, 3 months ago

Log in to reply

No, i go through this question while surfing on Internet

Kïñshük Sïñgh - 3 years, 3 months ago

Log in to reply

This question's solution can be found here

Dinesh Chavan - 3 years, 3 months ago

Log in to reply

Sorry but.... Solution is not there.. Check it again plz

Kïñshük Sïñgh - 3 years, 3 months ago

Log in to reply

Dont worry, I will try to add a solution there

Dinesh Chavan - 3 years, 3 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...