# Minimum value

Given $$x$$, $$y$$, and $$z$$ are real numbers that satisfy $$x + y + z = \frac { 1 }{ x } +\frac { 1 }{ y } +\frac { 1 }{ z }$$ and $$xyz = 1$$. Find the smallest value of $$|x + y + z|$$.

My Way

Based on $$QM \ge AM$$,

$$\frac { 3 }{ \frac { 1 }{ x } +\frac { 1 }{ y } +\frac { 1 }{ z } } \ge \frac { x+y+z }{ 3 } \\ 9\ge \left( \frac { 1 }{ x } +\frac { 1 }{ y } +\frac { 1 }{ z } \right) \left( x+y+z \right)$$

Because $$x + y + z = \frac { 1 }{ x } +\frac { 1 }{ y } +\frac { 1 }{ z }$$,

$$9\ge \left( \frac { 1 }{ x } +\frac { 1 }{ y } +\frac { 1 }{ z } \right) \left( x+y+z \right) \\ 9\ge { \left( x+y+z \right) }^{ 2 }\\ \pm 3\ge x+y+z\\ 3\ge |x+y+z|$$

But, I found the maximum value. Can you give me a hint?

Note by Wildan Bagus W. Hafidz
11 months, 2 weeks ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Seems like 1 is the minimum value. However, I'm stuck atm.

- 10 months, 3 weeks ago