Waste less time on Facebook — follow Brilliant.
×

My \( 50 \) followers note !

Here are a few challenging proofs to be done using Principles Of Mathematical Induction. I will be editing this note hereafter, by keeping new Induction Challenges, most probably one new challenge per week. Check these out and post your solutions in the comments below 📝 📬 📮 !

Challenge 1 -> Prove that the \( n^{th} \) term in the Fibonacci series is :-

\( u_{n} = \dfrac {1}{\sqrt {5}}\left[ \left (\dfrac {1+\sqrt {5}}{2}\right) ^{n}-\left( \dfrac {1-\sqrt {5}}{2}\right) ^{n}\right] \)

Challenge 2 -> Prove the rule of transitivity in inequalities using only the definitions and induction principles.

Note by Karthik Venkata
2 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...