Waste less time on Facebook — follow Brilliant.
×

My formula with Euler and Taylor

\[\displaystyle \large e + \sum_{n = 0}^{\infty} \frac{(1 - i\pi)^n}{n!} = 0\] \[\large i = e^{i\frac{\pi}{2}} = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = \sum_{n = 0}^{\infty} \frac{(i\pi)^n}{2^n \cdot n!} \]

Note by Guillermo Templado
4 months, 2 weeks ago

No vote yet
1 vote

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...