This problem seems so simple, but I cannot prove it:

\(a,b,c>0\).Prove that:

\((a^2+2)(b^2+2)(c^2+2)\geq 9(ab+bc+ca)\)

I tried all sorts of inequalities, but they didn't work.I reduced it to proving

\((x+2)(y+2)(z+2)\geq9(x+y+z)\), but I cannot prove that neither.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestHi Bogdan, This question is from APMO exam. You can find the solutions here But, I can add a another solution with some trignometry here. We choose \(A,B,C\) such that \(a=\sqrt{2}tanA\), \(b=\sqrt{2}tanB\),\(c=\sqrt{2}tanC\). Now, by using \(1+tan^{2}x=\frac{1}{cos^2x}\), We get \(\frac{4}{9}≥cosAcosBcosC(cosAsinBsinC+sinAcosBsinC+sinAsinBcosC)\), Which is same as proving \(\frac{4}{9}≥cosAcosBcosC(cosAcosBcosC-cos(A+B+C))\). Now, we have some "BAD LOOKING" Trignometric terms. So lets find a way to cancel them out. OK, then letting \(y=A+B+C\). Now bu Simple AM-GM, We Get \(cosAcosBcosC≤(\frac{cosA+cosB+cosC}{3})^3≤cos^3y\). Thus, Finally, we are left to show that \(\frac{4}{9}≥cos^3y(cos^3y-cos(3y))\). Now, by very easy simplification , we need to show \(\frac{4}{27}≥cos^4y(1-cos^2y)\), Which follows from simple AM-GM As \((\frac{cos^2y}{2}.\frac{cos^2y}{2}.(1-cos^2y))^{\frac{1}{3}}≤\frac{1}{3}(\frac{cos^2y}{2}+\frac{cos^2y}{2}+(1-cos^2y))=\frac{1}{3}\). And the equality holds here at \(a=b=c=1\)

Log in to reply

Thanks for the quick response!

Log in to reply

Ok, Hope you might have cleared ur doubts

Log in to reply

Log in to reply

Log in to reply

Log in to reply