Here I present solution to two problems posted on Brilliant: Family of 3's and Infinite sum of reciprocal products and provide a solution to the general expressions.

We know, \(\sqrt[a]{n\sqrt[a]{n\sqrt[a]{\cdots}}}=\sqrt[a-1]{n}\)

modifying the above one we get,

\(\sqrt[a]{n\sqrt[b]{n^{(b-1)/(a-1)}\sqrt[c]{n^{(c-1)/(a-1)}\sqrt[d]{n^{(d-1)/(a-1)}\sqrt[e]{\cdots}}}}}=\sqrt[a-1]{n}\)

Putting \(a=x+1,b=2x+1,c=3x+1,d=4x+1,e=5x+1,\cdots\) we get,

\(\displaystyle \color{blue} \sqrt[x+1]{n\sqrt[2x+1]{n^2\sqrt[3x+1]{n^3\sqrt[4x+1]{n^4\sqrt[5x+1]{\cdots}}}}}=\sqrt[x]{n}\)

Putting \(n=3, x=3\) we get, the nested radical as in Family of 3's :

\(\sqrt[a_1]{3 \sqrt[a_2]{3^2 \ \sqrt[a_3]{3^3 \ \sqrt[a_4]{\cdots}}}}=\sqrt[3]{3}\) where, \(a_n=3n+1\)

Now, \(\displaystyle \sqrt[x]{n}=\sqrt[x+1]{n\sqrt[2x+1]{n^2\sqrt[3x+1]{n^3\sqrt[4x+1]{n^4\sqrt[5x+1]{\cdots}}}}}\)

or,

\(n^\frac 1{x} = \left(n \left(n^2 \left(n^3 \left(\cdots \right)^\frac 1{4x+1} \right)^\frac 1{3x+1} \right)^\frac 1{2x+1} \right)^\frac 1{x+1} \\ = \exp \left(\ln n {\color{blue} \left(\frac 1{x+1} + 2 \cdot \frac 1{x+1} \cdot \frac 1{2x+1} + 3 \cdot \frac 1{x+1} \cdot \frac 1{2x+1} \cdot \frac 1{3x+1} + \cdots \right)} \right) \small \color{blue} \text{where }\exp (x) = e^x.\)

hence,

\(\displaystyle \color{blue} \frac 1{x}=\left(\frac 1{x+1} + 2 \cdot \frac 1{x+1} \cdot \frac 1{2x+1} + 3 \cdot \frac 1{x+1} \cdot \frac 1{2x+1} \cdot \frac 1{3x+1} + \cdots \right)\)

Putting \(x=3\) we get the infinite series in Infinite sum of reciprocal products:

\(\displaystyle \frac 14 + \frac 2{4 \times 7} + \frac 3{4 \times 7 \times 10} + \frac 4{4 \times 7 \times 10 \times 13} + \cdots = \frac 1{3}\)

In fact if \(a_i \geq 2\) and is an integer then,

\(\displaystyle \lim_{s \to \infty}\sum_{k = 1}^s \sum_{i=1}^n \frac k{\prod_{t=1}^k(t\cdot a_i +1)}=\sum_{i=1}^n \frac 1{a_i}\)

Using the same nested radicals as above I have derived the following:

- \(\displaystyle \sum_{n=1}^{63} \sqrt{n\sqrt[3]{n^2\sqrt[4]{n^3\sqrt[5]{\cdots}}}}=2016\)
- \(\displaystyle \lim_{m \to \infty} \prod_{j=1}^m \sqrt[a_1]{2 \sqrt[a_2]{2^2 \ \sqrt[a_3]{2^3 \ \sqrt[a_4]{\cdots}}}}=2^\frac{\pi^2}6 \approx 3.127\)

\(\color{pink} \text{Thank You}\)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestGood way but should have should have shown more intermediate steps

Log in to reply

Actually there is an easy way to do it, I will be modifying it soon

Log in to reply

Wow, I do not understand this at all. Thanks for sharing though.

Log in to reply