Waste less time on Facebook — follow Brilliant.
×

Nice Geometry Problem

The incenter of \(\triangle ABC\) touches its sides at \(D,E,F\) respectively, and \(BE, CF\) intersect the incircle second time at \(M, N\) respectively. Extend \(MD\) to \(P\) so that \(DP=2MD\). Prove that \(DE\) is tangent to the circle \(\odot (DPN)\).

Note by Alan Yan
1 year, 11 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

More incircle properties!

Property1: \(\frac {DN}{EN}=\frac {DF}{EF}\).

Proof: Since \(CD,CE\) are tangent to the incircle, \(\triangle CDN\sim \triangle CFD\implies \frac {DN^2}{DF^2}=\frac {CN}{CF}\). Symmetrically we have \(\frac {EN^2}{EF^2}=\frac {CN}{CF}\), thus \(\frac {DN}{DF}=\frac {EN}{EF}\) and switching \(DF,EN\) gives us our desired equality.

Property2: Let \(L\) denote the midpoint of \(EM\), then \(\triangle DML\sim \triangle DEF\)

Proof: Note that \(\angle ILB=\angle IFB=\angle IDB=90^{\circ}\), therefore \(D,I,L,F,B\) are concyclic where \(I\) is the incenter of \(ABC\). Hence \(\angle DLM=\angle DFB=\angle DEF\). Since \(\angle DML=\angle DFE\) by cyclic, we have our desired similarity by AA

Correlary: \(\frac {DN}{EN}=\frac {DF}{EF}=\frac {DM}{ML}=\frac {2DM}{EM}\)

Main proof: It suffices to show \(\angle DPN=\angle NDE=\angle NME\), since \(\angle PDN=\angle NEM\) by cyclic, we will prove that \(\triangle NDP\sim \triangle NEM\). This is equivalent to \(\frac {DN}{EN}=\frac {DP}{EM}=\frac {2DM}{EM}\) by SAS similarity, which follows from the correlary above.

Note: A cyclic quadrilateral that satisfies property 1 is called harmonic quadrilateral, and it is intimately related to concepts such as harmonic division and poles and polar.

Xuming Liang - 1 year, 11 months ago

Log in to reply

Btw do you have a document that goes over some incircle properties? I am not that familiar with them and they will be very useful.

Alan Yan - 1 year, 11 months ago

Log in to reply

BTW did u get this from AoPS? I just went on and saw the exact same problem

Xuming Liang - 1 year, 11 months ago

Log in to reply

Yes I did :)

Alan Yan - 1 year, 11 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...