Nice geometry problem

Let \(ABC\) be a triangle. \(D\) and \(E\) lie on \(AB\) such that \(AD = AC, BE = BC\) and the points \(D, A, B, E\) are collinear in that order. The bisectors of angle \(A\) and \(B\) intersect \(BC, AC\) at \(P\) and \(Q\) respectively, and the circumcircle of \(ABC\) at \(M\) and \(N\) respectively. Let \(O_1\) be the circumcenter of \(BME\) and \(O_2\) be the circumcenter of \(AND\). \(AO_1\) and \(BO_2\) intersect at \(X\). Prove that \(CX\) is perpendicular to \(PQ\).

Source : Serbia \(2008\).

Note by Zi Song Yeoh
3 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

b=c square

Sergio VIlla - 3 years, 9 months ago

Log in to reply

Solution (SPOILER) :

We let \(AB = c, BC = a, CA = b\) for simplicity.

Note that \(AE \cdot AQ = (a + c) \cdot \frac{bc}{a + c} = bc\), by Angle Bisector Theorem. Also, \(AP \cdot AM = AP \cdot (AP + PM) = AP^2 + AP \cdot PM = AP^2 + BP \cdot CP\), by Power of Point. Since by Stewart's Theorem, \(AP^2 + BP \cdot CP = \frac{AB^2 \cdot CP + AC^2 \cdot BP}{BC} = \frac{c^2(\frac{ab}{b + c}) + b^2(\frac{ac}{b + c})}{a} = \frac{bc(b + c)}{b + c} = bc\), we have \(AP \cdot AM = bc\).

Consider the following transformation (commonly known as \(\sqrt{bc}\)-inversion.) :

1) Reflect every point \(X\) across the angle bisector of \(\angle BAC\).

2) Invert about point \(A\) with radius \(\sqrt{bc}\).

So, it follows immediately that \(E\) and \(Q\) map to each other. Similarly, \(P\) and \(M\) map to each other. Thus, the circumcircle of \(BME\) is mapped to the circumcircle of \(CPQ\), with center \(O\). Therefore, \(AO\) is isogonal to \(AO_1\) in \(\angle BAC\), since the reflection of \(O_1\) across the angle bisector of \(\angle BAC\) is collinear with \(A\) and \(O\). Similarly, \(BO\) is isogonal to \(BO_2\) in \(\angle ABC\). Thus, \(O\) and \(X\) are isogonal conjugates with respect to \(\triangle ABC\). Finally, since in triangle \(CQP\), \(CX\) is isogonal with \(CO\), \(C, H, X\) are collinear and thus \(CX \perp PQ\). (\(H\) is the orthocenter of \(CPQ\))

The last line follows from the fact that \(O\) and \(H\) are isogonal conjugates.

Zi Song Yeoh - 3 years, 9 months ago

Log in to reply

An easy way to establish \(AP\cdot AM=bc\): we have \(\angle BAM=\angle CAP\) (since \(AP\) angle bisector) and \(\angle ACB=\angle AMB\) since \(ABMC\) cyclic. It follows that \(\triangle ABM\sim \triangle APC\) so side ratios are equal.

Jubayer Nirjhor - 3 years, 9 months ago

Log in to reply

Can you provide a diagramatical representation . I coudnt.draw a figure for the given information

Shehanaaz Sk - 3 years, 9 months ago

Log in to reply

(a)=ad bxqpxmn-1-1X1x(a)(B)2x

Sergio VIlla - 3 years, 9 months ago

Log in to reply

I m not able to figure out the diagram. Can someone help please?

Shreya Hardas - 3 years, 9 months ago

Log in to reply

Who can prove 4=5

Atif Qureshi - 3 years, 9 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...