Hello friends, help me in finding the value of

\(\large\ a = 1 + \frac { 1 }{ { 2 }^{ 2 } } + \frac { 1 }{ { 3 }^{ 2 } } + ... + \frac { 1 }{ { 2015 }^{ 2 } }\) .

Do post solution.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestSolution :\(\displaystyle \sum^{\infty}_{n=1}\dfrac{1}{n^{2}}=\dfrac{\pi^{2}}{6} \sim 1.64 \text{ and }\displaystyle \sum^{2015}_{n=1}\dfrac{1}{n^{2}}=a\)

\(\text{Simply by observation, we can conclude }\Rightarrow 1<a<1.64\)

\(\text{Therefore, }\lfloor a \rfloor=\boxed{1}\)

Log in to reply

Thank for a solution. But please explain me how you got this:

\(\large\ \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 } } = \frac { \pi ^{ 2 } }{ 6 } }\) ?

Log in to reply

See this.

Log in to reply

Log in to reply

Log in to reply

Well,it is obvious if one knows the solution of the basel problem .However this is a much simpler question.Notice that the first term is 1,the next two terms are less than 2×1÷2^2 that is 1/2,the next four terms less than 1/4 and so on.Even if we did this til infinity,the expression would be less than 1+1/2+1/4.... which is 2.Hence the required value is 1.

Log in to reply

[a]=1

Log in to reply

Question has asked for value of a, not floor function of a. So a will be equal to approx. 1.64 . Do note that the series is going smaller and smaller.

Log in to reply

In the question he didn't wrote about the integral value but in the original paper it was asked to find the integer part of \(a\).

Log in to reply

Yes, I forgot to write that.

By the way, how many questions you solved in the exam ?

Log in to reply

Log in to reply

Ok, :) , integral value will be one only.

Log in to reply

that is now we have 1+....so on .consider 1 the next terms are decreasing values in decimals .so anyway if we add also we won't get more than 1 so the integral part of that expression i.e the[a] is 1...

Log in to reply