This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.

When posting on Brilliant:

Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .

Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.

Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

Markdown

Appears as

*italics* or _italics_

italics

**bold** or __bold__

bold

- bulleted - list

bulleted

list

1. numbered 2. list

numbered

list

Note: you must add a full line of space before and after lists for them to show up correctly

Well,it is obvious if one knows the solution of the basel problem .However this is a much simpler question.Notice that the first term is 1,the next two terms are less than 2×1÷2^2 that is 1/2,the next four terms less than 1/4 and so on.Even if we did this til infinity,the expression would be less than 1+1/2+1/4.... which is 2.Hence the required value is 1.

that is now we have 1+....so on .consider 1 the next terms are decreasing values in decimals .so anyway if we add also we won't get more than 1 so the integral part of that expression i.e the[a] is 1...

Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in`\(`

...`\)`

or`\[`

...`\]`

to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestQuestion has asked for value of a, not floor function of a. So a will be equal to approx. 1.64 . Do note that the series is going smaller and smaller.

Log in to reply

In the question he didn't wrote about the integral value but in the original paper it was asked to find the integer part of $a$.

Log in to reply

Yes, I forgot to write that.

By the way, how many questions you solved in the exam ?

Log in to reply

Log in to reply

Ok, :) , integral value will be one only.

Log in to reply

Well,it is obvious if one knows the solution of the basel problem .However this is a much simpler question.Notice that the first term is 1,the next two terms are less than 2×1÷2^2 that is 1/2,the next four terms less than 1/4 and so on.Even if we did this til infinity,the expression would be less than 1+1/2+1/4.... which is 2.Hence the required value is 1.

Log in to reply

Solution :$\displaystyle \sum^{\infty}_{n=1}\dfrac{1}{n^{2}}=\dfrac{\pi^{2}}{6} \sim 1.64 \text{ and }\displaystyle \sum^{2015}_{n=1}\dfrac{1}{n^{2}}=a$

$\text{Simply by observation, we can conclude }\Rightarrow 1<a<1.64$

$\text{Therefore, }\lfloor a \rfloor=\boxed{1}$

Log in to reply

Thank for a solution. But please explain me how you got this:

$\large\ \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { n }^{ 2 } } = \frac { \pi ^{ 2 } }{ 6 } }$ ?

Log in to reply

See this.

Log in to reply

Log in to reply

Log in to reply

that is now we have 1+....so on .consider 1 the next terms are decreasing values in decimals .so anyway if we add also we won't get more than 1 so the integral part of that expression i.e the[a] is 1...

Log in to reply

[a]=1

Log in to reply