Waste less time on Facebook — follow Brilliant.
×

NMTC Inter Level Problem 8

Two sides of a triangle are \(8\) cm. and \(18\) cm. and the bisector of the angle formed by them is of length \(\frac{60}{13}\) cm. the length of the third side is

Options:

(A) \(22\)

(B) \(23\)

(C) \(24\)

(D) \(25\)

Note by Nanayaranaraknas Vahdam
3 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

The formula for the bisector of any triangle is \(l=\frac{2ab \cos\frac{\theta}{2}}{a+b}\), where \(\theta\) is the angle between the sides \(a,b\). Now that you know the cosine of the angle, just use the cosine theorem (also note that \(\cos \theta = 2\cos^2\frac{\theta}{2}-1\)).

Using this method we can see that \(\cos \frac{\theta}{2}=\frac{5}{12}\), thus \(\cos\theta = 2\cdot \frac{25}{144}-1=\frac{50}{144}-1=-\frac{47}{72}\), hence by using the cosine theorem we can see that

\(\color{RoyalBlue}{\text{answer}}=\sqrt{64+324+288\cdot \frac{47}{72}}=\sqrt{388+4\cdot 47}=\boxed{(\text{C})\text{ }24}\).

Mathh Mathh - 3 years, 5 months ago

Log in to reply

We have the formula of length of angle bisector as derived here

\(d^2=\dfrac{bc}{(b+c)^2} \Bigl( (b+c)^2-a^2\Bigr) \)

\(\dfrac{60\times 60}{13\times 13} = \dfrac{8\times 18}{26\times 26} (26^2-a^2)\)

\(26^2-a^2=\dfrac{60\times 60\times 26\times 26}{13\times 13\times 18\times 8} = 100\)

This gives \(a^2=576 \implies a=\boxed{24}\)

Aditya Raut - 3 years, 5 months ago

Log in to reply

What is this formula known as?

Saurabh Mallik - 3 years, 4 months ago

Log in to reply

idk, Length of angle bisector,maybe ! Name is not important, formula is important !

Aditya Raut - 3 years, 4 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...