Waste less time on Facebook — follow Brilliant.
×

NMTC Problem 3b

If x,y,z are each greater than 1, show that

\(\frac { { x }^{ 4 } }{ { (y-1) }^{ 2 } } +\frac { { y }^{ 4 } }{ { (z-1 })^{ 2 } } +\frac { { z }^{ 4 } }{ { (x-1) }^{ 2 } } \ge 48\)

This a part of my set NMTC 2nd Level (Junior) held in 2014.

Note by Siddharth G
3 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Firstly, we have, \( (a-2)^2 \geq 0 \implies a^2 -4a + 4 \geq 0 \implies a^2 \geq 4(a-1) \implies \frac{a^2}{a-1} \geq 4 \implies \frac{a^4}{(a-1)^2} \geq 16 \)

Now, By AM-GM,

\( \frac{x^4}{(y-1)^2} + \frac{y^4}{(z-1)^2} + \frac{z^4}{(x-1)^2} \geq 3\sqrt[3]{\frac{x^4}{(y-1)^2}* \frac{y^4}{(z-1)^2}* \frac{z^4}{(x-1)^2} } = 3\sqrt[3]{\frac{x^4}{(x-1)^2}* \frac{y^4}{y-1)^2}* \frac{z^4}{(z-1)^2} } \geq 3\sqrt[3]{16*16*16} = 3 * 16 = 48. \)

Siddhartha Srivastava - 3 years, 2 months ago

Log in to reply

Amazing answer! Thank you!

Siddharth G - 3 years, 2 months ago

Log in to reply

Is the AM-GM step necessary? You could just say \(\frac{x^4}{(x-1)^4} \geq 16\) and so on for y and z and add the 3 inequalities together right?

Josh Banister - 3 years ago

Log in to reply

@Josh Banister But in the question, the denominator and the numerator are of different variables, which makes the AM-GM necessary to bring the denominator and the numerator with the same variables together. Thus \(\frac { { x }^{ 4 } }{ { (x-1) }^{ 2 } } \ge 16\) can only be used after the AM_GM step.

Siddharth G - 3 years ago

Log in to reply

@Siddharth G You're right. Just skipped over that for some reason ^o^

Josh Banister - 3 years ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...