No need for compound angle formulae.....

Usually when you need to calculate trigonometry values such as sin15 and cos15 then you can use: \[sin(\theta\pm \phi) = sin(\theta)cos(\phi)\pm sin(\phi)cos(\theta) \] However, I found an alternative method using geometry directly.

Firstly you draw an isosceles triangle ABC (A is the top angle) with A = 30, B=C = 75. Now draw a line from B that is perpendicular to AC at a point D. This means that \(\angle\)ABD = 60 and \(\angle\)DBC = 15 \(\Rightarrow\) \(\angle\)BCD = 75. Also, without loss of generality, let AB = 2

By using special triangle AB = 2, BD = 1 and AD = \(\sqrt{3}\) \(\Rightarrow\) DC = 2 - \(\sqrt{3}\). Now by using pythagoras' theorem: \[BC = \sqrt{1 + (2-\sqrt{3})^2 } = \sqrt{8-4\sqrt{3}} = \sqrt{(\sqrt{6} - \sqrt{2})^2} = \sqrt{6} - \sqrt{2}\] So now we have a rightangle triangle BCD where all the sides are known.

Finally; \[cos75 = sin15 = \frac{opposite}{Hypotenuse}\ = \frac{2-\sqrt{3}}{\sqrt{6} - \sqrt{2}}\times\frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} + \sqrt{2}} = \frac{\sqrt{6} - \sqrt{2}}{4}\] \[sin75 = cos15 = \frac{1}{\sqrt{6} - \sqrt{2}}\ = \frac{\sqrt{6} + \sqrt{2}}{4}\] \[tan15 = \frac{opposite}{adjacent} = 2 - \sqrt{3} \ and \ tan75 = \frac{1}{2-\sqrt{3}} = 2+\sqrt{3} \]

Note by Curtis Clement
3 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Nice work !!!!!

Azhaghu Roopesh M - 3 years, 8 months ago

Log in to reply

Thankyou :)

Curtis Clement - 3 years, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...