No triples? :(

Prove that there are no triples \((a,b,c)\) of positive integers satisfying \(2^a - 5^b7^c = 1 \).

Note by Paramjit Singh
4 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Suppose there exists a triple \( (a,b,c,) \)

Then \( 2^a \equiv 1 \pmod5 \)

Since \( ord(5) = 4\) we have \( a = 4a'\) for some \( a' \).

Rearranging, \(2^{4a'} - 1 = 5^b7^c\)

\( 2^{4a'} - 1 \equiv (2^2)^{2a'} - 1 \equiv 1^{2a'} - 1 \equiv 0 \pmod3 \)

But \(5^b7^c \not\equiv 0 \pmod3 \)

Therefore there exist no triples \( (a,b,c) \) which satisfy the given statement

Siddhartha Srivastava - 4 years, 4 months ago

Log in to reply

Nice.

Paramjit Singh - 4 years, 4 months ago

Log in to reply

Comment deleted Feb 15, 2014

Log in to reply

\( 2^3 - 2^2 = 4 \equiv 1 \pmod {3} \). You need to rethink your solution

Josh Rowley - 4 years, 4 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...