Waste less time on Facebook — follow Brilliant.
×

Non Euclidean Geometry

I only did a diagramatic justification \(This\quad problem\quad gives\quad another\quad model\quad for\quad hyperbolic\quad geometry\\ Our\quad points\quad will\quad be\quad the\quad points\quad in\quad the\quad open\quad disc:\\ D=\left\{ \left( x,y \right) :\quad { x }^{ 2 }+{ y }^{ 2 }<1 \right\} \\ The\quad lines\quad will\quad be\quad arcs\quad of\quad circles\quad that\quad intersect\quad the\quad \\ boundary\quad of\quad D.\\ Show\quad that\quad this\quad model\quad satisfies\quad the\quad hyperbolic\quad axiom.\\ \\ \)

I don't know if it requires any analysis. Sorry about my bad english

Note by Ceesay Muhammed
2 years, 3 months ago

No vote yet
1 vote

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...