# Non Euclidean Geometry

I only did a diagramatic justification $$This\quad problem\quad gives\quad another\quad model\quad for\quad hyperbolic\quad geometry\\ Our\quad points\quad will\quad be\quad the\quad points\quad in\quad the\quad open\quad disc:\\ D=\left\{ \left( x,y \right) :\quad { x }^{ 2 }+{ y }^{ 2 }<1 \right\} \\ The\quad lines\quad will\quad be\quad arcs\quad of\quad circles\quad that\quad intersect\quad the\quad \\ boundary\quad of\quad D.\\ Show\quad that\quad this\quad model\quad satisfies\quad the\quad hyperbolic\quad axiom.\\ \\$$

I don't know if it requires any analysis. Sorry about my bad english

Note by Ceesay Muhammed
3 years, 4 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$