Nth Derivative of Polynomial (Part 3)

Let n be the number of derivatives taken and b be the exponent of the given term of the given polynomial.

  1. If \(n=b\), then the nth derivative of the given polynomial is

\(\frac { { d }^{ n } }{ { dx }^{ n } } { ax }^{ b }=a(n!)\)

Example: Find the 4th derivative of \(3{ x }^{ 4 }\)?

Solution: Since n is equal to b, let's use the third statement.Thus,

\(\frac { { d }^{ 4 } }{ { dx }^{ 4 } } { 3x }^{ 4 }=3(4!)=72\)

To prove that it is correct, let's use the repeated differentiation method.

\(y={ 3x }^{ 4 }\\ \\ \frac { dy }{ dx } =3(4){ x }^{ 4-1 }=12{ x }^{ 3 }\\ \\ \frac { { d }^{ 2 }y }{ { dx }^{ 2 } } =12(3){ x }^{ 3-1 }=36{ x }^{ 2 }\\ \\ \frac { { d }^{ 3 }y }{ { dx }^{ 3 } } =36(2){ x }^{ 2-1 }=72x\\ \frac { { d }^{ 4 }y }{ { dx }^{ 4 } } =72(1){ x }^{ 1-1 }=72\)

Note by Merzel Mark Guilaran
3 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...