Number Theory (1st math Thailand POSN 2014)

You cannot use any theorems involving modular arithmetic.

1.) Prove the theorem that "Let \(a,b \in \mathbb{Z}\) such that \(a \neq 0\) or \(b \neq 0\), we get that \(\exists x,y \in \mathbb{Z}, (a,b) = ax+by\)"

Note: \((a,b)\) is the greatest common divisor.

2.) Let \(p\) be a prime number. Prove that \(\exists k \in \mathbb{Z}, (p-1)! + 1 = p^{k}\) if and only if \(p = 2,3,5\).

3.) Prove that if \(p\) and \(8p^{2}+1\) are prime numbers, then \(8p^{2}+2p+1\) is also prime number.

4.) Prove that there exists infinitely many positive integer \(n\) such that \(10^{n}+3\) is composite.

5.) Find all such primes \(p\) and positive numbers \(n\) such that \(n^{p} + 3^{p}\) are perfect squares.

This is the part of Thailand 1st round math POSN problems.

Note by Samuraiwarm Tsunayoshi
3 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

For 3, 8p^2 +1 is a multiple of 3 if p isn't equal to3 . so, p = 3 and hence forth, it becomes trivial

Brilliant Member - 3 years, 6 months ago

Log in to reply

\(Problem \enspace 3:\)

If \(p=2, \enspace 8p^2+1=8(2)^2+1=33 ;\)Not prime

If \(p=3, \enspace 8p^2+1=8(3)^2+1=73 \enspace\) and \(\enspace 8p^2+2p+1=8(3)^2+2(3)+1=79 ;\) both are primes.

Other prime numbers can be written as \(6k\pm1\).

Then, \(8p^2+1 = 8(6k\pm1)^2+1=8(36k^2\pm12k+1)+1 = 3(96k^2\pm32k+3)\) ; which can't be a prime.

So only for \(p=3\), \(8p^2+1\) and \(8p^2+2p+1\) both become prime.

Fahim Shahriar Shakkhor - 3 years, 6 months ago

Log in to reply

For 4, if n is of form 6k + 4 , then 10^n + 3 is a multiple of 7, hence composite

Brilliant Member - 3 years, 6 months ago

Log in to reply

1.) is just the Euclidean algorithm, but I can't just freaking prove it nuuuu.

Samuraiwarm Tsunayoshi - 3 years, 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...