Waste less time on Facebook — follow Brilliant.
×

Oh boy! Can't tell you the limit

I guess everyone seems to be knowing the old results,

\[\Large\bullet \lim_{x\to 0}\frac{\sin x}{x}=1\] \[\Large\bullet \lim_{x\to 0}\frac{\tan x}{x}=1\] \[\Large\bullet \lim_{x\to 0}[\frac{\sin x}{x}]=0\] \[\Large\bullet \lim_{x\to 0}[\frac{\tan x}{x}]=1\] \((\textbf {[•] is greatest integer function})\)

Yeah you know them, great. One can easily get them straight from the inequality

\(\sin x<x<\tan x\) for \(0< x<\frac{π}{2}\)

Also it can even be realized by the graphs of \(\sin x\) & \(\tan x\) that as \(x\) comes closer to origin (or\( x\to 0\)), the graphs of these trigonometric functions \(\color{blue}{\textbf {coincide the line y=x}}\), thereby giving the first two results in our hand.

Furthermore it's seen that near the origin, the sin curve \(\color{blue}{\textbf { is slightly below the line y=x}}\) & tan curve \(\color{blue}{\textbf { is slightly above the line y=x}}\). Did you smell the proof of the last two of the old results?

Anyways, everything's real easy till we reach to the puzzle of ours.. \[\Large\text{What's the value of} \color{red} { \lim_{x\to 0}[\frac{\sin x•\tan x}{x^2}]}\] Can you submit the result decorated with the rigorous proof of yours??

Note by Sanjeet Raria
3 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Since this is a even function, it suffice to check

\[ \lim_{x \rightarrow 0^{+} } [ \frac{\sin(x)\tan(x)}{x^2} ] \]

Consider the function \[ f(x) = \sin(x)\tan(x)-x^2 \\ f'(x) = \sec(x)\tan(x) + \sin(x) - 2x \ge 2\tan(x)-2x \ge 0 \](BY AM-GM inequality. So this function is increasing. This means that, \( f(0^{+}) > f(0)= 0 \) So \[ \frac{\sin(x)\tan(x)}{x^2} \ge 1 \] . Also we see that \[ \lim_{x \rightarrow 0^{+} } \frac{\sin(x)\tan(x)}{x^2} = 1 \] . So combining these two gives, \[ \lim_{x \rightarrow 0} [ \frac{\sin(x)\tan(x)}{x^2} ] = 1 \]

Shivang Jindal - 3 years, 1 month ago

Log in to reply

use expansion of sinx and tanx

Ojas Dhiman - 3 years, 2 months ago

Log in to reply

is it 1 ?

Parth Lohomi - 3 years, 2 months ago

Log in to reply

Yes indeed.. But share the proof.

Sanjeet Raria - 3 years, 2 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...