If \(\quad a^3+b^3+c^3 = (a+b+c)^3\) ,

Prove that \(\quad \large a^{2n+1}+ b^{2n+1}+ c^{2n+1} = (a+b+c)^{2n+1}\) for all \(n \in

N\)

Nice proofs are always welcome. :)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewestWell I THINK it can be proved without induction.@Nihar Mahajan @Vaibhav Prasad I will write it in short. It can easily be derived that \((a+b)(b+c)(a+c)=0\) Now we have 3 cases in first all the 3 terms are 0 , or any 2terms are 0 or only one term is 0.

Case\( (a+b)=0\)

\(a=-b\)

So now just substitute a = -b in the equation (which is to be proved)

That will give \(c^{2n+1} = c^{2n+1}\)

Log in to reply

Oh ,,, I got your method... Thanks!

Log in to reply

See my approach:

\[a^3+b^3+c^3=(a+b+c)^3-3(a+b+c)(ab+bc+ac)+3abc \\ \Rightarrow 3(a+b+c)(ab+bc+ac) = 3abc \\ (a+b+c)\left(\dfrac{ab+bc+ac}{abc}\right)=1 \quad or \quad (a+b+c)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\]

Am not able to do more than this...

Log in to reply

@Nihar Mahajan

Take \(a+c=x\) Then \((b+x)(bx+ac) = abc\)

Multiplying and simplifying gives us \(x(b^{2}+bx+ac )= 0\)substitute x Then Further factorizing gives us \(a+b)(b+c)(a+c) = 0\)

Now the method goes as usual (given in my method).

Log in to reply

@Kalash Verma I understood your method. I am asking , can you extend my approach furthur?

Log in to reply

@Nihar Mahajan Well actually its the extension of ur approach. In the third line I have replaced a+c by x and then I have explained above.In the end both results in same factors .

Log in to reply

@Kalash Verma

Thanks for your help! :)Log in to reply

Log in to reply

I will try using this method and tell you about it . But this method does not work when a or b or c=0 and if its right then it proves 0/0=1 (lol was it so easy)

Log in to reply

Log in to reply

Log in to reply

Well, if the first condition is met, then one of these are true, \(a+b=0\), \(b+c=0\), \(c+a=0\), and so the next condition follows immediately.

Log in to reply

@Michael Mendrin @Calvin Lin Sir , can you extend my approach that I have written above?

Log in to reply

I can't go anywhere with that approach either. But if I just solve it for \(=0\), I get the condition \(a+b=0\), \(b+c=0\), or \(c+a=0\), and so the rest becomes easy.

Log in to reply

Comment deleted Apr 20, 2015

Log in to reply

Where has \(3abc\) gone?

Log in to reply

Induction on \(n\) ??

Log in to reply

Most probably .. xD

Log in to reply

I always prefer induction... even though it's kind of a shortcut

Log in to reply