I saw this problem online some time ago, and I have been trying to solve this inequality:

\(x,y,z >0\), prove \[\frac{x^4}{8x^3+5y^3}+\frac{y^4}{8y^3+5z^3}+\frac{z^4}{8z^3+5x^3} \geqslant \frac{x+y+z}{13}\]

This question was asked online years ago and no one has proved it with an "elegant" way. I decided to share it here to all who haven't seen this problem yet, as I find it interesting and exciting while solving the problem (although I haven't found an elegant proof) XD

Have fun!

P.S. I will get "badges" if many clicks into the link "online" above :)

Upon typing the title I remembered a quote I saw in Evan Chen's book :D :

Graders received some elegant solutions, some not-so-elegant solutions, and some so-not-elegant solutions. --MOP 2012

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestMuito obrigado pela solução detalhada para esta tarefa. é incrivelmente interessante. Eu gentilmente usá-lo em hashing24 é confiavel Isso me ajuda a encontrar algum tipo de interconexão entre indicadores

Log in to reply

There is a solution that involves using symmetric polynomials, but you will need a good computer to do this.

Log in to reply

This problem can be solved using just pen and paper.

This inequality was used as a proposal problem for National TST of an Asian country a few years back. However, upon receiving the official solution, the committee decided to drop this problem immediately. They don't believe that any students can solve this problem in 3 hour time frame.

Log in to reply

Of course you can, but a proper proof would require symmetric polynomials, for which simplifying them (in this case) would be a right piece of work for a computer, let alone a human being. Fortunately, I have a very good PC that can help me out here; many others on this website would struggle to do so.

Log in to reply

these.

Ok. I was wondering if it could be solved using inequalities/theorems likeLog in to reply