# On Recurring decimals

$\large{0\red{.}\overline{x_1x_2x_3...x_n}=\dfrac{x_1x_2x_3...x_n}{10^n-1}}$

Proof of the above statement

Let $l=0\red{.}\overline{x_1x_2x_3...x_n}$ $10^nl=x_1x_2x_3...x_n\red{.}\overline{x_1x_2x_3...x_n}$ $\Rightarrow 10^nl-l={x_1x_2x_3...x_n}$ $(10^n-1)l=x_1x_2x_3...x_n$ ${l=\dfrac{x_1x_2x_3...x_n}{10^n-1}}$ $\boxed{0\red{.}\overline{x_1x_2x_3...x_n}=\dfrac{x_1x_2x_3...x_n}{10^n-1}}$

$\large{a_1a_2a_3...a_p\red{.}b_1b_2b_3...b_q\overline{x_1x_2x_3...x_n}=\dfrac{1}{10^q}(10^q\times a_1a_2a_3...a_p+b_1b_2b_3...b_q+\dfrac{x_1x_2x_3...x_n}{10^n-1})}$

Proof of the above statement

For any number $a_1a_2a_3...a_p\red{.}b_1b_2b_3...b_q\overline{x_1x_2x_3...x_n}$ $a_1a_2a_3...a_p\red{.}b_1b_2b_3...b_q\overline{x_1x_2x_3...x_n}=a_1a_2a_3...a_p+0\red{.}b_1b_2b_3...b_q\overline{x_1x_2x_3...x_n}$ $=\dfrac{1}{10^q}(10^q\times a_1a_2a_3...a_p+b_1b_2b_3...b_q\red{.}\overline{x_1x_2x_3...x_n})$ $=\dfrac{1}{10^q}(10^q\times a_1a_2a_3...a_p+b_1b_2b_3...b_q+0\red{.}\overline{x_1x_2x_3...x_n})$ $=\boxed{\dfrac{1}{10^q}(10^q\times a_1a_2a_3...a_p+b_1b_2b_3...b_q+\dfrac{x_1x_2x_3...x_n}{10^n-1})}$

Note :

• $x_1x_2$ act as number with digits $x_1,x_2$ for example if $x_1=5$ and $x_2=8\Rightarrow x_1x_2=58$ dont confuse ($x_1x_2\cancel{=}x_1\times x_2$), same for $x_1x_2x_3$ and $x_1x_2x_3...x_{n-1}x_n$

• $0\red{.}\overline{a}=0\red{.}aaaaa...$

Note by Zakir Husain
6 months, 2 weeks ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

- 6 months, 2 weeks ago

Well.. I am impressed.

- 6 months, 2 weeks ago

✨ brilliant +1

- 6 months, 2 weeks ago

By the way, I have an interesting #Geometry problem!
Given points $A,B,C,D$, find the square $\square PQRS$ with A on PQ, B on QR, C on RS, D on SP.
I figured out the first part, where we can construct circles with diameters AB, BC, CD, DA respectively, so if a point W is on arc AB, $\angle AWB=90^\circ.$

- 6 months, 2 weeks ago

I tried the problem and got an algorithm to construct a rectangle $PQRS$ with points $A,B,C$ and $D$ on sides $PQ,QR,RS,SP$ respectively. Also there will be infinitely many such rectangles for given points $A,B,C,D$

- 6 months, 2 weeks ago

- 6 months, 2 weeks ago

I will try it also! and will inform you as I get any results.

- 6 months, 2 weeks ago

Let’s start a discussion! That might help :)

- 6 months, 2 weeks ago

square is also a rectangle..

- 6 months, 2 weeks ago

But a rectangle isn’t a square, so I hope to find an algorithm to construct a square (I know it is possible but I don’t know a specific way to do it except for brute-force :P) :)

- 6 months, 2 weeks ago