Let \(x,y\quad \in \quad R\) such that \(\cos { x } \cos { y } \quad +\quad \quad 2\sin { y } \quad +\quad 2\sin { x } \cos { y } \quad =\quad 3\).

Then find the value of : \(\tan ^{ 2 }{ x } +\quad 5\tan ^{ 2 }{ y } \quad =\quad ?\).

It is really very beautiful question. That's why I share this with our Brilliant community.

**Use any Tool of mathematics. There are no restrictions**

(You may use Vectors, Complex numbes, Trigonometry, etc .)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestHint: Write the given equation as

\(\bigg(\cos x+2\sin x\bigg)\cos y+2\sin y=3\)

\(\ddot\smile\)

Log in to reply

@Karthik Kannan Did you mean this way :

\(E\quad \quad \quad =\quad (\cos x+2\sin x)\cos y+2\sin y\\ \\ { E }_{ max }\quad =\quad \sqrt { { (\cos x+2\sin x) }^{ 2 }+\quad { (2) }^{ 2 } } \quad \\ \\ \quad \quad \quad \quad =\quad \sqrt { \cfrac { 13 }{ 2 } \quad -\quad \cfrac { 3 }{ 2 } \cos { 2x } \quad +\quad 2\sin { 2x } } \\ \quad \quad \quad \quad \\ \quad { E }_{ max }\quad \in \quad \left[ 2\quad ,\quad 3 \right] \\ \\ { E }_{ max }\quad \le \quad 3\\ \\ But\quad \quad \quad { E }_{ max }\quad =\quad 3\\ \).

Now using boundedness of function ! Great ! This is also Nice Method !!

Log in to reply

HINT: USE cauchy inequality

Log in to reply

Yes that is best!!

Log in to reply

could you please explain how?

Log in to reply

\[\quad \overset { \rightarrow }{ A } \quad =\quad \cos { x } \cos { y } \quad +\quad \sin { y } +\quad \quad \sin { x } \cos { y } \\ \\ \quad \overset { \rightarrow }{ B } \quad =\quad \overset { \^ }{ i } \quad +\quad 2\overset { \^ }{ j } \quad +\quad 2\overset { \^ }{ k } \quad \].

Now Verify that :

\[\overset { \rightarrow }{ A } .\overset { \rightarrow }{ B } \quad =\quad \left| \overset { \rightarrow }{ A } \right| \left| \overset { \rightarrow }{ B } \right| \].

So angle between these two vectors is zero degree , means they are parallel ,

Now use simple condition of Parallel Vectors and get the Answer ! :)

@Aman Gautam I Hope you Got it !

Log in to reply

if x,y belongs to R , then the first expression should be true for all real values of x, but we can see here its true only for some specific

Log in to reply

Please answer my doubt deepanshu gupta

Log in to reply

wait be clear , I said : \(x,y\quad \in \quad R\). which means x and y are real numbers. it dosn't mean that that expression is true for every x,y .

And if i say \(\forall \quad x,y\quad \in \quad R\quad \quad \). then it means this expression is true for every x ( which means it is identity )

Log in to reply