×

# Open Challenge :)

Let $$x,y\quad \in \quad R$$ such that $$\cos { x } \cos { y } \quad +\quad \quad 2\sin { y } \quad +\quad 2\sin { x } \cos { y } \quad =\quad 3$$.
Then find the value of : $$\tan ^{ 2 }{ x } +\quad 5\tan ^{ 2 }{ y } \quad =\quad ?$$.

It is really very beautiful question. That's why I share this with our Brilliant community.

Use any Tool of mathematics. There are no restrictions

(You may use Vectors, Complex numbes, Trigonometry, etc .)

Note by Deepanshu Gupta
3 years, 2 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Hint: Write the given equation as

$$\bigg(\cos x+2\sin x\bigg)\cos y+2\sin y=3$$

$$\ddot\smile$$

- 3 years, 2 months ago

@Karthik Kannan Did you mean this way :

$$E\quad \quad \quad =\quad (\cos x+2\sin x)\cos y+2\sin y\\ \\ { E }_{ max }\quad =\quad \sqrt { { (\cos x+2\sin x) }^{ 2 }+\quad { (2) }^{ 2 } } \quad \\ \\ \quad \quad \quad \quad =\quad \sqrt { \cfrac { 13 }{ 2 } \quad -\quad \cfrac { 3 }{ 2 } \cos { 2x } \quad +\quad 2\sin { 2x } } \\ \quad \quad \quad \quad \\ \quad { E }_{ max }\quad \in \quad \left[ 2\quad ,\quad 3 \right] \\ \\ { E }_{ max }\quad \le \quad 3\\ \\ But\quad \quad \quad { E }_{ max }\quad =\quad 3\\$$.

Now using boundedness of function ! Great ! This is also Nice Method !!

- 3 years, 2 months ago

HINT: USE cauchy inequality

- 3 years, 2 months ago

Yes that is best!!

- 3 years, 2 months ago

could you please explain how?

- 3 years, 2 months ago

Let two Vectors such that :

$\quad \overset { \rightarrow }{ A } \quad =\quad \cos { x } \cos { y } \quad +\quad \sin { y } +\quad \quad \sin { x } \cos { y } \\ \\ \quad \overset { \rightarrow }{ B } \quad =\quad \overset { \^ }{ i } \quad +\quad 2\overset { \^ }{ j } \quad +\quad 2\overset { \^ }{ k } \quad$.

Now Verify that :

$\overset { \rightarrow }{ A } .\overset { \rightarrow }{ B } \quad =\quad \left| \overset { \rightarrow }{ A } \right| \left| \overset { \rightarrow }{ B } \right|$.

So angle between these two vectors is zero degree , means they are parallel ,

Now use simple condition of Parallel Vectors and get the Answer ! :)

@Aman Gautam I Hope you Got it !

- 3 years, 2 months ago

if x,y belongs to R , then the first expression should be true for all real values of x, but we can see here its true only for some specific

- 3 years, 2 months ago

- 3 years, 2 months ago

wait be clear , I said : $$x,y\quad \in \quad R$$. which means x and y are real numbers. it dosn't mean that that expression is true for every x,y .

And if i say $$\forall \quad x,y\quad \in \quad R\quad \quad$$. then it means this expression is true for every x ( which means it is identity )

- 3 years, 2 months ago