Open Challenge :)

Let \(x,y\quad \in \quad R\) such that \(\cos { x } \cos { y } \quad +\quad \quad 2\sin { y } \quad +\quad 2\sin { x } \cos { y } \quad =\quad 3\).
Then find the value of : \(\tan ^{ 2 }{ x } +\quad 5\tan ^{ 2 }{ y } \quad =\quad ?\).

It is really very beautiful question. That's why I share this with our Brilliant community.

Use any Tool of mathematics. There are no restrictions

(You may use Vectors, Complex numbes, Trigonometry, etc .)

Note by Deepanshu Gupta
3 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Hint: Write the given equation as

\(\bigg(\cos x+2\sin x\bigg)\cos y+2\sin y=3\)

\(\ddot\smile\)

Karthik Kannan - 3 years, 5 months ago

Log in to reply

@Karthik Kannan Did you mean this way :

\(E\quad \quad \quad =\quad (\cos x+2\sin x)\cos y+2\sin y\\ \\ { E }_{ max }\quad =\quad \sqrt { { (\cos x+2\sin x) }^{ 2 }+\quad { (2) }^{ 2 } } \quad \\ \\ \quad \quad \quad \quad =\quad \sqrt { \cfrac { 13 }{ 2 } \quad -\quad \cfrac { 3 }{ 2 } \cos { 2x } \quad +\quad 2\sin { 2x } } \\ \quad \quad \quad \quad \\ \quad { E }_{ max }\quad \in \quad \left[ 2\quad ,\quad 3 \right] \\ \\ { E }_{ max }\quad \le \quad 3\\ \\ But\quad \quad \quad { E }_{ max }\quad =\quad 3\\ \).

Now using boundedness of function ! Great ! This is also Nice Method !!

Deepanshu Gupta - 3 years, 5 months ago

Log in to reply

HINT: USE cauchy inequality

Lakshya Kumar - 3 years, 5 months ago

Log in to reply

Yes that is best!!

Deepanshu Gupta - 3 years, 5 months ago

Log in to reply

could you please explain how?

Aman Gautam - 3 years, 5 months ago

Log in to reply

@Aman Gautam Let two Vectors such that :

\[\quad \overset { \rightarrow }{ A } \quad =\quad \cos { x } \cos { y } \quad +\quad \sin { y } +\quad \quad \sin { x } \cos { y } \\ \\ \quad \overset { \rightarrow }{ B } \quad =\quad \overset { \^ }{ i } \quad +\quad 2\overset { \^ }{ j } \quad +\quad 2\overset { \^ }{ k } \quad \].

Now Verify that :

\[\overset { \rightarrow }{ A } .\overset { \rightarrow }{ B } \quad =\quad \left| \overset { \rightarrow }{ A } \right| \left| \overset { \rightarrow }{ B } \right| \].

So angle between these two vectors is zero degree , means they are parallel ,

Now use simple condition of Parallel Vectors and get the Answer ! :)

@Aman Gautam I Hope you Got it !

Deepanshu Gupta - 3 years, 5 months ago

Log in to reply

if x,y belongs to R , then the first expression should be true for all real values of x, but we can see here its true only for some specific

Sandeep Rathod - 3 years, 5 months ago

Log in to reply

Please answer my doubt deepanshu gupta

Sandeep Rathod - 3 years, 5 months ago

Log in to reply

wait be clear , I said : \(x,y\quad \in \quad R\). which means x and y are real numbers. it dosn't mean that that expression is true for every x,y .

And if i say \(\forall \quad x,y\quad \in \quad R\quad \quad \). then it means this expression is true for every x ( which means it is identity )

Deepanshu Gupta - 3 years, 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...