This is an interesting problem, namely because the parabola's axis is not parallel to an x-y axis. We are used to dealing with conics in this form. However, using the definition of a parabola (distance to a point on the parabola is the same from a fixed point called the focus and a fixed line called the directrix), one can develop a hairy formula for a general parabola. Plugging in and solving for some variables, I got a possible focus to be (1,0) and a possible directrix of x-2y=0. The axis of the parabola then must be 2x+y=2, and the vertex (9/10,7/10). There could be more answers, but I didn't check. If you want me to look more into this problem or write a formal proof, I'll consider it.

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestThis is an interesting problem, namely because the parabola's axis is not parallel to an x-y axis. We are used to dealing with conics in this form. However, using the definition of a parabola (distance to a point on the parabola is the same from a fixed point called the focus and a fixed line called the directrix), one can develop a hairy formula for a general parabola. Plugging in and solving for some variables, I got a possible focus to be (1,0) and a possible directrix of x-2y=0. The axis of the parabola then must be 2x+y=2, and the vertex (9/10,7/10). There could be more answers, but I didn't check. If you want me to look more into this problem or write a formal proof, I'll consider it.

Log in to reply

your in level four of geometry...please give it a try at least....it does not need much perspiration...best of luck ....:)

Log in to reply

Dude this is already done... but i liked this problem very much that's why posted that..

Log in to reply