Prove the following:

Given a fixed point \(P(c,d)\) inside parabola \(x^2 = 4ay\), where \(a\) is the focal length, we draw a chord through \(P\) intersecting the parabola at \(A\) and \(B\). Prove the locus of the intersections of the tangents to the parabola at \(A\) and \(B\) is the line \(y=\dfrac {c}{2a} - d\). (The chord can be variable)

**Extension:** Prove the general form.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestHint:Let the chord be \(XY\) then this chord will be the chord of contact for the point \(C (x_1,y_1)\) which is point of intersection of tangents.Equation of a chord of contact can be easily derived. here it comes out to be \( xx_1 -2a(y+y_1) =0 \)

Now it passes through \(P\)

So plug it in the equation then you get the required locus for the point \(C\)

Log in to reply