Waste less time on Facebook — follow Brilliant.

Playing with Numbers

I was recently doing a combinatorics problem, where we had to select 4 books from a set of 10 ,where the selected books are not adjacent to each other. The author put forward the idea of using a 10-digit binary number and the books to be selected were 1's and the others were 0's. While playing with the idea I eventually found that(Image above)

and so on, and thus followed the Fibonacci Sequence! Does anyone know why it is? Please share you opinions!

Note by Siddharth G
3 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)


Sort by:

Top Newest

Let \(a_{n}\) be the number of n-digit binary numbers such that no 1's are together.

Now such number might end with 0 or 1

Case-1, It ends with 0 Now the number of such n-digit numbers will be \(a_{n-1}\)

Case-2, It ends with 1 Here, it cannot end with \(\boxed{11}\) block. It must be ending with \(\boxed{01}\) Number of such binary numbers will be \(a_{n-2}\)

Therefore \(a_{n}\)=\(a_{n-1}\) + \(a_{n-2}\) which is the condition for fibonacci series.

Pranjal Jain - 3 years, 5 months ago

Log in to reply


Problem Loading...

Note Loading...

Set Loading...