Waste less time on Facebook — follow Brilliant.
×

Please help with math proof

HERE del(theta)/del(x) means partial derivative of theta with respect to x.Please Help with detailed solution...Thanks in advance...

Note by Raja Metronetizen
3 years, 10 months ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

Disregard my previous comment, this can be proved. We will begin with (ii), (though it doesn't really matter) because we will use the result of (ii) to prove (i).

\((x)^2 + (y)^2 = r^2\) \(\Rightarrow\) \(\frac{\partial} {\partial x}\)\(((x)^2 + (y)^2)\) = \((2r)(\frac{\partial r} {\partial x})\)

\(\Rightarrow\) \(2x = (2r)(\frac{\partial r} {\partial x})\)

\(\Rightarrow\) \(\frac{x} {r} = \frac {\partial r} {\partial x}\)

Note that \(cos(\theta)=\frac{x} {r}\),

Hence \(cos(\theta)=\frac {\partial r} {\partial x}\)

\(x=rcos(\theta)\) \(\Rightarrow\) \(\frac {\partial x} {\partial r} = \frac {\partial (rcos(\theta))} {\partial r}\)

\(\Rightarrow\) \(\frac{\partial x} {\partial r} = \frac {\partial r} {\partial x} = cos(\theta) \)

This proves (ii). Now for (i):

\(x=rcos(\theta)\) \(\Rightarrow\) \(\frac {\partial x} {\partial \theta} = \frac {\partial} {\partial \theta} (rcos(\theta))\) = \(-rsin(\theta)\)

\(\Rightarrow\) \((\frac {1} {r})\frac{\partial x} {\partial \theta}= -sin(\theta)\)

\(x=rcos(\theta)\) \(\Rightarrow\) \(\frac{\partial x} {\partial x}= \frac{\partial} {\partial x} (rcos(\theta)\)

\(\Rightarrow\) \(1= cos(\theta)\frac{\partial r} {\partial x} -rsin(\theta) \frac {\partial \theta} {\partial x}\)

In (ii) we showed that: \(\frac{\partial r} {\partial x} = cos(\theta)\), hence:

\(1=cos^2(\theta) - rsin(\theta)\frac {\partial \theta} {\partial x}\)

\(\Rightarrow\) \(\frac{1-cos^2(\theta)} {-rsin(\theta)}=\frac{\partial \theta} {\partial x}\)

\(\Rightarrow\) \(\frac {-sin(\theta)} {r} = \frac {\partial \theta} {\partial x}\)

\(\Rightarrow\) \(r\frac{\partial \theta} {\partial x} = -sin(\theta) = \frac {1} {r} \frac {\partial x} {\partial \theta}\)

This proves (i). Q.E.D. Ethan Robinett · 3 years ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...