Waste less time on Facebook — follow Brilliant.
×

Please help me with this problem

Hello everyone!

I came across a strange question today. Consider a number say 10, we will try to express it as a sum of positive integers say

\[ 10 = \underbrace{1+1+1+\cdots + 1}_{\text{ten 1's}} = 2 + 4 + 4 = 2 + 3 + 5 = \cdots \]

We find the maximum possible lowest common multiple of these numbers and call it \(S_{10} \), so \(S_{10} = 2\times3\times5=30\).

Other examples are \(S_{7} = 3\times4=12, S_{8} = 3\times5=15\).

Is there a way to find \(S_{n}\) for all positive integers \(n\)?

Note by Keshav Tiwari
1 year, 5 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

@Calvin Lin

Keshav Tiwari - 1 year, 5 months ago

Log in to reply

Yes there is a way.

What have you tried?

Calvin Lin Staff - 1 year, 5 months ago

Log in to reply

Not much ,I did it by hit and trial for small numbers( as most questions asked only about them) .I have no idea on how to proceed with large numbers.

Keshav Tiwari - 1 year, 5 months ago

Log in to reply

@Keshav Tiwari Try smoothing an inequality.

Calvin Lin Staff - 1 year, 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...