Let n be a positive integer.Prove that the given expression

\({ 3 }^{ { 3 }^{ n } }({ 3 }^{ { 3 }^{ n } }+1)+{ 3 }^{ { 3 }^{ n+1 } }-1\quad\) is not a prime.

Let n be a positive integer.Prove that the given expression

\({ 3 }^{ { 3 }^{ n } }({ 3 }^{ { 3 }^{ n } }+1)+{ 3 }^{ { 3 }^{ n+1 } }-1\quad\) is not a prime.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewestNote that the expression is always even whatever be the value of n. 3 being odd 3^3^n is odd and so is 3^3^(n+1). Thus {(3^3^n)+1} and [{3^3^(n+1)-1] are even. – Kuldeep Guha Mazumder · 1 year ago

Log in to reply