Waste less time on Facebook — follow Brilliant.
×

please help needed ...thanks:)

If\[(ax^{2}+bx+c)y+a'x^{2}+b'x+c'=0\] find the condition that \(x\) may be a rational function of \(y\)

Note by Rajat Bisht
2 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Here's one of the things that I could instantaneously think of, maybe it's one way...

\((ay+a')x^2+(by+b')x+(cy+c') =0 \)

Solving the quadratic, its roots will be

\(x=\dfrac{-by-b' \pm \sqrt{(by+b')^2-4(ay+a')(cy+c')}}{2ay+2a'}\)

For \(x\) to be rational function of \(y\), the term \((by+b')^2-4(ay+a')(cy+c')\) should be perfect square, giving square root as a linear in \(y\) , or it could be zero.


Thus I think, conditions will be as following -

\((i) \quad (b^2-4ac)y^2-2(2ac'+2a'c-bb')y+(b'^2-4a'c')=0\) ... i.e. giving 2 values of \(y\)

\((ii)\quad\) Comparing the above quadratic with \(kx^2+lx+m=0\), condition for perfect square is \(\Bigl( \dfrac{l}{2k} \Bigr)^2 = \dfrac{m}{k} \implies l^2=4mk \implies (2ac'+2a'c-bb')^2 = (b^2-4ac)(b'^2-4a'c') \)

@Rajat Bisht if you have something like answer key to check. please tell me if this is right.

Aditya Raut - 2 years, 9 months ago

Log in to reply

Bingo you got it right aditya..thanks well for ur convenience the problem is from hall &knight

Rajat Bisht - 2 years, 9 months ago

Log in to reply

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...